Рулевой червяк. Рулевое управление, рулевой механизм: принцип действия, устройство, ремонт

Рис. 1

Рулевой механизм червячного типа состоит из:

Рулевого колеса с валом,

Картера червячной пары,

Пары «червяк-ролик»,

Рулевой сошки.

В картере рулевого механизма в постоянном зацеплении находится пара «червяк-ролик». Червяк есть не что иное, как нижний конец рулевого вала, а ролик, в свою очередь, находится на валу рулевой сошки. При вращении рулевого колеса ролик начинает перемещаться по винтовой нарезке червяка, что приводит к повороту вала рулевой сошки. Червячная пара, как и любое другое зубчатое соединение, требует смазки, и поэтому в картер рулевого механизма заливается масло, марка которого указана в инструкции к автомобилю. Результатом взаимодействия пары «червяк-ролик» является преобразование вращения рулевого колеса в поворот рулевой сошки в ту или другую сторону. А далее усилие передается на рулевой привод и от него уже на управляемые (передние) колеса.

Рулевой привод, применяемый с механизмом червячного типа, включает в себя:

Правую и левую боковые тяги,

Среднюю тягу,

Маятниковый рычаг,

Правый и левый поворотные рычаги колес.

Каждая рулевая тяга на своих концах имеет шарниры, для того чтобы подвижные детали рулевого привода могли свободно поворачиваться относительно друг друга и кузова в разных плоскостях.

К достоинствам механизма «червяк-ролик» относятся:

Низкая склонность к передаче ударов от дорожных неровностей

Большие углы поворота колес

Возможность передачи больших усилий

Недостатками являются:

Большое количество тяг и шарнирных сочленений с вечно накапливающимися люфтами

- «тяжелый» и малоинформативный руль

Сложности в технологии изготовления

Рулевой механизм типа “винт-гайка-сектор”

Рис. 2 Рулевой механизм типа "винт -- шариковая гайка -- рейка -- сектор"

1 -- распределитель;

3 -- шарики с трубкой рециркуляции;

4 -- поршень-рейка;

5 -- зубчатый сектор;

6 -- вал сошки;

7 -- ограничительный клапан

Полное название - "винт-шариковая гайка-рейка-сектор". Винт 2, которым оканчивается рулевой вал, через циркулирующие по резьбе шарики 3 толкает вдоль своей оси поршень-рейку 4. А тот в свою очередь поворачивает зубчатый сектор 5 рулевой сошки. Из-за возможности передавать большие моменты, устанавливается на грузовиках, пикапах и больших внедорожниках, работающих в экстремальных условиях.

Преимущества рулевого механизма “винт-шариковая гайка-рейка-сектор”:

Возможность конструкции с высоким передаточным числом

Недостатки рулевого механизма “винт-шариковая гайка-рейка-сектор”:

Нетехнологичен

Дорогой

Большие габариты

Тяжелый

Рулевой механизм реечного типа


В рулевом механизме «шестерня- рейка» усилие к колесам передается с помощью прямозубой или косозубой шестерни, установленной в подшипниках, и зубчатой рейки, перемещающейся в направляющих втулках. Для обеспечения беззазорного зацепления рейка прижимается к шестерне пружинами. Шестерня рулевого механизма соединяется валом с рулевым колесом, а рейка -- с двумя поперечными тягами, которые могут крепиться в середине или по концам рейки. Полный поворот управляемых колес из одного крайнего положения в другое осуществляется за 1,75...2,5 оборота рулевого колеса. Передаточные отношения механизма определяются отношением числа оборотов зубчатого колеса, равное числу оборотов рулевого колеса, к расстоянию перемещения рейки.

Реечный механизм рулевого управления состоит из картера, отлитого из алюминиевого сплава. В полости картера на шариковом и роликовом подшипниках установлено приводное зубчатое колесо. На картере и на пыльнике выполнены метки для правильной сборки механизма рулевого управления. Зубчатое колесо находится в зацеплении с зубчатой рейкой, которая поджимается к зубчатому колесу пружиной через металлокерамический упор. Пружина поджимается гайкой со стопорным кольцом, создавая сопротивление отворачиванию гайки. Подпружиненным упором облегчается беззазорное зацепление зубчатого колеса с зубчатой рейкой по всей величине хода. Рейка одним концом опирается на упор, а другим -- на разрезную пластмассовую втулку. Ход рейки ограничивается в одну сторону кольцом, напрессованным на рейку, а в другую сторону -- втулкой резино-металлического шарнира левой рулевой тяги. Полость картера механизма рулевого управления защищена от загрязнения гофрированным чехлом.

Вал рулевого управления соединяется с приводным зубчатым колесом эластичной муфтой. Верхняя часть вала опирается на шариковый радиальный подшипник, запрессованный в трубу кронштейна. На верхнем конце вала на шлицах через демпфирующий элемент крепится гайкой рулевое колесо.

Рулевой механизм с переменным отношением

Около нулевого положения рулевого колеса, когда едешь по прямой на высокой скорости, излишняя острота рулевого управления нежелательна, заставляет водителя напрягаться. А при парковке или развороте, наоборот, хотелось бы иметь передаточное отношение поменьше -- чтобы поворачивать руль на как можно меньший угол. Для этого существует несколько схем реечных рулевых механизмов.

Так работает реечный рулевой механизм ZF с переменным передаточным отношением. Здесь изменяются профиль зубьев рейки и плечо зацепления

Реечный рулевой механизм Honda VGR (Variable Gear Ratio -- переменное передаточное отношение) использовался на автомобилях Honda NSX

Фирма ZF использует зубья рейки с переменным профилем: в околонулевой зоне зубья треугольные, а ближе к краям -- трапецеидальной формы. Шестерня входит с ними в зацепление с разным плечом, что и помогает немного изменить передаточное отношение. А другой, более сложный, вариант использовала Honda на своем суперкаре NSX. Здесь зубья рейки и шестерни сделаны с переменными шагом, профилем и кривизной. Правда, шестерню приходится двигать вверх-вниз, но зато варьировать передаточное отношение можно в гораздо более широких пределах.

Рулевой привод состоит из двух горизонтальных тяг и поворотных рычагов телескопических стоек передней подвески. Тяги соединяются с поворотными рычагами при помощи шаровых шарниров. Поворотные рычаги приварены к стойкам передней подвески. Тяги передают усилие на поворотные рычаги телескопических стоек подвески колес и соответственно поворачивают их вправо или влево.

К преимуществам реечного рулевого механизма относится:

Малая масса

Компактность

Невысокая цена

Минимальное количество тяг и шарниров

Простота соединения рулевого механизма с управляемыми колесами

Прямая передача усилия

Высокая жесткость и КПД

Легкость в оснащении гидроусилителем

Недостатки:

Из-за простоты конструкции любой толчок от колес передается на руль

Трудности в изготовлении механизма с высоким передаточным числом, поэтому для тяжелых машин такой механизм не подходит.

Выбор и обоснование выбранной конструкции

По своим технологическим, ценовым, конструктивным качествам рулевой механизм «шестерня-рейка» наиболее подходит для переднеприводной компоновки и подвески McPherson, обеспечивая большую легкость и точность рулевого управления.

При проектировании автомобиля ВАЗ-2123, старались взять как можно больше узлов из модели ВАЗ-2121, поэтому на автомобиле ставили механизм типа “червяк-ролик”. Однако Chevrolet Niva не является мощным внедорожником, что бы на него целесообразно было ставить этот механизм. Он дороже, технологически сложен, тяжелее. Возможности, которые дает автомобилю червячный механизм, не используются в полной мере. При использовании рейкм, исключается концентрация напряжения от рулевого механизма на лонжероне, нет необходимости усиливать его в месте крепления механизма.

По всем этим причинам я считаю необходимым заменить механизм типа “червяк-ролик” на более дешевый, легкий, технологичный реечный механизм, который в необходимой мере обеспечивает легкость и точность рулевого управления.

В связи с тем, что будет заменен тип механизма, необходимо внести ряд изменений в конструкцию других узлов и агрегатов:

Так как за осью передних колес расположить реечный механизм не представляется возможным, то ставим его перед осью;

Для того чтобы освободить место между поддоном двигателя и дифференциалом для рейки, смещаем межколесный дифференциал на то же расстояние (20,5мм) назад, что не изменяет сбалансированность всего узла;

Так как рейка располагается перед осью, то тормозной суппорт колеса необходимо расположить сзади.

Основным узлом в любом транспортном средстве является рулевое управление. Для чего же нужно рулевое управление? За все время совершенствования конструкции системы, основной принцип работы рулевого управления остался прежним. Он заключается в преобразовании и передачи физического усилия водителя во время воздействия на руль автомобиля на колеса. Другими словами узел рулевого управления обеспечивает обратную связь, позволяя изменять траекторию движения транспортного средства.

Устройство рулевого управления

Из чего состоит рулевое управление автомобиля? Общее устройство конструкции этого узла на транспортных средствах представлена следующими элементами:

  • колеса;
  • рулевой привод;
  • механизм рулевого управления;
  • тяги и колонка.

Схема взаимодействия руля автомобиля с ведущей колесной парой не является сложной. Водитель через привод передает усилие на рулевой механизм, который обеспечивает поворот колес. Помимо этого, узел, обеспечивая обратную связь, предоставляет информацию о состоянии дорожного покрытия. Согласно вибрациям рулевого колеса максимально точно определяется тип движения, на основании чего происходит диагностика и корректируется управление машиной.

Средний диаметр руля легкового транспорта составляет примерно 400 мм. В грузовой и специальной технике руль несколько больше, а в спорткарах меньше.

Что входит в рулевое управление?

Между рулем и механизмом расположена рулевая колонка, которая представлена прочным валом с шарнирными соединениями. Особенностью конструкции колонки является минимальный риск получения травматизма водителя в случае ДТП, поскольку при сильном лобовом столкновении происходит ее схлопывание. Для комфортной эксплуатации транспортного средства, положение рулевой колонки настраивается при помощи механического либо электрического привода. Помимо этого, предусмотрена система блокировки механизма, которая позволяет предотвратить угон автомобиля.

Главное назначение рулевого управления заключается в увеличении механического усилия водителя и его передача на колеса. Для этого в конструкцию системы включен специальный редуктор. На легковых автомобилях в основном используют следующие типы рулевого управления:

  1. Реечный механизм, конструкция которого состоит из набора смонтированных на валу шестерней, агрегатируемых с рейкой, на одной из ее плоскостей по всей длине нанесены специальные зубцы. При вращении руля усилие через колонку передается рулевой рейке, в результате чего она свободно перемещается, взаимодействуя с рулевыми тягами и поворачивая колеса. Необходимо заметить, что рулевое управление автомобилем может иметь рейку, на которой располагаются зубья с переменным шагом. Такая конструкция значительно повышает эффективность управления транспортным средством.
  2. Червячный рулевой механизм. Его принцип функционирования следующий: «червяк» при взаимодействии с ведомой шестерней передает усилие сошке. В свою очередь, сошка рулевого управления взаимодействует с одной из тяг, конец которой заканчивается маятниковым рычагом. Этот рычаг смонтирован на опоре. При повороте руля сошка приводит в движение боковую тягу одновременно со средним рычагом, который взаимодействует со второй боковой тягой и изменяет ее положение. Благодаря этому осуществляется поворот ступиц управляемых колес.

Некоторые особенности работы рулевого управления автомобиля


Большинство современных моделей автомобильного транспорта имеют инновационную систему управления всеми четырьмя колесами. Благодаря этому значительно улучшается динамика движения транспортного средства на местности со сложным рельефом. Помимо этого, рулевое управление автомобиля адаптированное на все колеса позволяет добиться большей маневренности при скоростной езде. Это возможно благодаря повороту каждого из колес.

Примечательно, что в рулевом управлении подруливание колес может осуществляться системой в пассивном режиме. Это возможно благодаря наличию в конструкции задней части подвески специальных упругих резинометаллических деталей. При возникновении крена кузова за счет изменения величины и направления нагрузки осуществляется изменение направления движения. Рулевое управление с функцией подруливания задних колес позволяет эффективно распределить усилие для поворота всех колес. Помимо этого, такая система не позволяет осуществить поворот колес при активном состоянии подвески.

В конструкцию адаптивной системы подруливания входят шарниры и тяги. Шарнир имеет несколько элементов в своем составе, для удобства использования его конструкция представлена в виде снимающегося наконечника. Кинематическую схему рулевого управления автомобиля удобнее всего представить в идее прямоугольника, на каждой из сторон которого находятся:

  • плечи;
  • угол схождения;
  • развал;
  • продольный и поперечный наклон.

Плечи, продольный и поперечный наклон обеспечивают стабилизацию движения, в то время как остальные параметры находятся в постоянном противодействии. Поэтому еще одной задачей рулевого управления является стабилизация всех возникающих в процессе движения сил.

Роль усилителя в системе рулевого управления


Этот элемент помимо того, что позволяет снизить усилие прикладываемое водителем к рулевому колесу, позволяет значительно увеличить точность управления автомобилем. Благодаря наличию усилителя в конструкции рулевого управления появилась возможность использовать в системе элементы, обладающие небольшой величиной придаточного числа. Усилители системы управления делятся на три типа:

  1. Электрический.
  2. Пневматический.
  3. Гидравлический.

Однако большее распространение получил последний тип. Гидравлика отличается надежностью конструкции и плавностью работы, но требует технического обслуживания по замени жидкости. Электроусилитель рулевого управления встречается реже, но все же большинство моделей современной автомобильной техники укомплектовано именно им. Усиление в нем обеспечивает электрический привод. Заметим, что электронное управление отличается наличием расширенного ряда возможностей, но изредка требует проверки и регулировки.

Что такое автоматическое рулевое управление?

Одной из перспективных разработок в автомобилестроении является интеллектуальная система автоматического управления транспортными средствами. Можно сказать, что автопилот, описанный большинством писателей-фантастов в своих произведениях, теперь стал реальностью. Сегодня современной автомобильной технике по силам выполнение большинства действий без участия водителя, самым распространенным из которых является парковка.

Лидером по производству автомобилей оборудованных этой инновационной системой является немецкий концерн BMW, который активно использует на своем модельном ряде сдвоенный планетарный редуктор. Управление таким редуктором осуществляется при помощи электропривода, в результате чего удается совместно с изменением скорости транспортного средства изменять придаточное отношение при передаче усилия от руля к поворотным колесам. Благодаря такому техническому решению значительно повышается быстродействие, и обеспечивается максимально точная обратная связь.

Одной из основных систем, обеспечивающих безопасность передвижения на автомобиле, является рулевое управление. Назначение рулевого управления автомобиля - возможность менять направление движения, совершать повороты и маневры при объезде препятствий или обгоне. Эта составляющая также важна, как и тормозная система. Доказательством тому является предписание ПДД, эксплуатация автомобиля с неисправными указанными механизмами категорически запрещена.

Особенности узла и конструкция

На автомобилях используется кинематический способ смены направления движения, подразумевающий, что осуществление поворота происходит за счет смены положения управляемых колес. Обычно управляемой является передняя ось, хотя существуют и авто с так называемой системой подруливания. Особенность работы в таких авто заключается в том, что колеса задней оси тоже поворачиваются при изменении направления, хоть и на меньший угол. Но пока эта система широкого распространения не получила.

Помимо кинематического способа на технике используется еще и силовой. Особенность его заключается в том, что для совершения поворота колеса одной стороны притормаживаются, в то время, как с другой стороны они продолжают двигаться с прежней скоростью. И хоть этот способ изменения направления на легковых авто распространения не получил, на них он все же используется, но в несколько ином качестве – как система курсовой устойчивости.

Этот узел автомобиля состоит из трех основных элементов:

  • рулевая колонка;
  • рулевой механизм;
  • привод (система тяг и рычагов);

Рулевой узел

У каждой составляющей – своя задача.

Рулевая колонка

Выполняет передачу вращательного усилия, которое создает водитель для изменения направления. Состоит она из рулевого колеса, располагаемого в салоне (на него и воздействует водитель, вращая его). Оно жестко посажено на вал колонки. В устройстве этой части рулевого управления очень часто используется вал, разделенный на несколько частей, соединенных между собой карданными шарнирами.

Такая конструкция сделана не просто так. Во-первых, это позволяет менять угол положения рулевого колеса относительно механизма, смещать его в определенную сторону, что нередко необходимо при компоновке составных частей авто. В дополнение такая конструкция позволяет повысить комфортабельность салона – водитель может менять положение рулевого колеса по вылету и наклону, обеспечивая максимально удобное его положение.

Во-вторых, составная рулевая колонка имеет свойство «ломаться» в случае ДТП, снижая вероятность травмирования водителя. Суть такова – при фронтальном ударе двигатель может сместиться назад и толкнуть рулевой механизм. Если бы вал колонки был цельным, изменение положения механизма привело бы к выходу вала с рулевым колесом в салон. В случае же со составной колонкой, перемещение механизма будет сопровождаться всего лишь изменением угла одной составляющей вала относительно второй, а сама колонка остается неподвижной.

Рулевой механизм

Предназначен для преобразования вращения вала рулевой колонки в поступательные движения элементов привода.

Наибольшее распространение на легковых автомобилях получили механизмы типа «шестерня-зубчатая рейка». Ранее же использовался еще один вид – «червяк-ролик», который сейчас в основном используется на грузовых авто. Еще один вариант для грузовиков – «винтовой».

«шестерня-рейка»

Распространение тип «шестерня-рейка» получил благодаря сравнительно простому устройству рулевого механизма. Состоит этот конструктивный узел из трех основных элементов – корпус, в котором размещается шестерня и перпендикулярно ей – рейка. Между двумя последними элементами имеется постоянное зубчатое зацепление.

Работает этот вид механизма так: шестерня жестко связана с рулевой колонкой, поэтому она вращается вместе с валом. Из-за зубчатого соединения вращение передается на рейку, которая при таком воздействии смещается внутри корпуса в ту или иную сторону. Если водитель вращает рулевое колесо влево, взаимодействие шестерни с рейкой приводит к тому, что последняя перемещается вправо.

Зачастую на авто применяются механизмы «шестерня-рейка» с фиксированным передаточным числом, то есть диапазон поворота рулевого колеса для изменения угла колес одинаков при всех их положениях. Для примера, предположим, что для поворота колес на угол 15° необходимо сделать 1 полный оборот руля. Так вот, неважно, в каком положении находятся управляемые колеса (крайнее, прямолинейное), для поворота на указанный угол придется сделать 1 оборот.

Но некоторые автопроизводители устанавливают на свои авто механизмы с меняющимся передаточным числом. Причем достигается это достаточно просто – изменением угла положения зубьев на рейке в определенных зонах. Эффект от этой доработки механизма такой: если колеса стоят прямо, то для изменения их положения на те же 15° (пример) требуется 1 оборот. Но если они находятся в крайнем положении, то из-за измененного передаточного числа, колеса повернуться на указанный угол уже через пол-оборота. В результате диапазон поворота руля «от края до края» значительно меньше, чем в механизме с фиксированным передаточным числом.

Рейка с переменным передаточным числом

Помимо простоты устройства тип «шестерня-рейка» используется еще потому, что в такой конструкции возможна реализация исполнительных механизмов гидроусилителя (ГУР) и электроусилителя (ЭУР), а также электрогидравлического (ЭГУР).

«червяк-ролик»

Следующий тип – «червяк-ролик», менее распространен и на легковых авто сейчас практически не используется, хотя его можно встретить на автомобилях ВАЗ классического семейства.

В основе этого механизма положена червячная передача. Представляет червяк собой винт с резьбой особого профиля. Этот винт располагается на валу, соединенном с рулевой колонкой.

С резьбой этого червяка контактирует ролик, соединенный с валом, на который посажена сошка – рычаг, взаимодействующий с элементами привода.

Червячный рулевой механизм

Суть работы механизма такова: при вращении вала, винт вращается, что приводит к продольному перемещению ролика по его резьбе. А поскольку ролик установлен на валу, то это смещение сопровождается поворотом последнего вокруг своей оси. Это в свою очередь приводит к полукруговому движению сошки, которая и воздействует на привод.

От механизма типа «червяк-ролик» на легковых авто отказались в пользу «шестерни-рейки» из-за невозможности интегрировать в него гидроусилитель (на грузовых авто он все же имелся, но исполнительный механизм был вынесенным), а также достаточно сложной конструкции привода.

Винтовой тип

Конструкция винтового механизма – еще сложнее. В ней также имеется винт с резьбой, но контактирует он не с роликом, а со специальной гайкой, на внешней стороне которой нанесен зубчатый сектор, взаимодействующий с таким же, но сделанным на валу сошки. Также существуют механизмы с промежуточными роликами между гайкой и зубчатым сектором. Принцип же действия такого механизма практически идентичен червячному – в результате взаимодействия вал проворачивается и тянет сошку, а та в свою очередь – привод.

Винтовой рулевой механизм

На винтовой механизм можно установить гидроусилитель (гайка выполняет роль поршня), но на легковых авто он не применяется из-за массивности конструкции, поэтому и используется он только на грузовиках.

Привод

Привод в конструкции рулевого управления используется для передачи перемещения рейки или сошки на управляемые колеса. Причем в задачу этой составляющей входит изменение положения колес на разные углы. Обусловлено это тем, что колеса при повороте движутся по разным радиусам. Поэтому колесо с внутренней стороны при изменении траектории движения должно поворачиваться на больший угол, чем внешнее.

Конструкция привода зависит от используемого механизма. Так, если на авто используется «шестерня-рейка», то привод состоит всего лишь из двух тяг, соединенных с поворотным кулаком (роль которого выполняет амортизационная стойка) посредством шарового наконечника.

К рейке эти тяги могут крепиться двумя способами. Менее распространенным является жесткая фиксация их болтовым соединением (в некоторых случаях соединение осуществляется через сайлент-блок). Для такого соединения в корпусе механизма проделано продольное окно.

Более распространенный метод соединения тяг – жесткое, но подвижное соединение с концами рейки. Для обеспечения такого соединения на конце обеих тяг сделан шариковый наконечник. Посредством гайки этот шар прижимается к рейке. При передвижении последней тяга меняет свое положение, что и обеспечивает имеющееся соединение.

В приводах, где используется механизм «червяк-ролик», конструкция значительно сложнее и представляет собой целую систему рычагов и тяг, получивших называние рулевой трапеции. Так, к примеру, на ВАЗ-2101 привод состоит из двух боковых тяг, одной средней, маятникового рычага и поворотных кулаков с рычагами. При этом для обеспечения возможности изменения угла положения колеса поворотный кулак крепиться к рычагам подвески при помощи двух шаровых опор (верхней и нижней).

Большое количество составных элементов, а также соединений между ними делает такой тип привода более подверженным износу и возникновению люфтов. Этот факт - еще одна причина отказа от червячного механизма в пользу реечного.

«Обратная связь»

Стоит отметить, что в рулевом механизме существует еще и так называемая «обратная связь». Водитель не только воздействует на колеса, а посредством ее же получает информацию об особенностях движения колес по дороге. Проявляется это в виде вибраций, рывков, создания определенно направленных усилий на руле. Эта информация считается очень важной для правильной оценки поведения авто. Доказательством тому является тот факт, что в авто, оснащаемых ГУР и ЭУР, конструкторы сохранили «обратную связь».

Передовые разработки

Этот узел продолжают совершенствовать, так самыми последними достижениями являются системы:

  • Активного (динамического) рулевого управления. Она позволяет изменять передаточное число механизма в зависимости от скорости автомобиля. Также выполняет и дополнительную функцию – корректировка угла передних колес в поворотах и при торможении на скользкой дороге.
  • Адаптивного рулевого управления (управление по проводам). Это самая новая и перспективная система. В ней отсутствует прямая связь между рулем и колесами, всё работает за счёт датчиков и исполнительных устройств (сервоприводов). Большое распространение система ещё не получила по причине психологического и экономического факторов.

Система «рули по проводам»

Заключение

В целом механизм является достаточно надежным узлом, не требующим никакого обслуживания. Но при этом эксплуатация рулевого управления автомобиля подразумевает проведение своевременной диагностики для выявления неисправностей.

Конструкция этого узла состоит из множества элементов с подвижными соединениями. А где такие соединения есть, со временем из-за износа контактирующих элементов, в них появляются люфты, которые в значительной мере могут повлиять на управляемость авто.

Сложность диагностики рулевого управления зависит от его конструктивного исполнения. Так в узлах с механизмом «шестерня-рейка» соединений, которые необходимо проверять не так уж и много: наконечники, зацепление шестерни с рейкой, карданы рулевой колонки.

А вот с червячным механизмом из-за сложной конструкции привода точек диагностики значительно больше.

Что касается ремонтных работ при нарушении работоспособности узла, то наконечники при сильном износе просто заменяются. В рулевом механизме на начальном этапе люфт удается убрать регулировкой зацепления, а если это не помогло – переборкой узла с использованием ремкомплектов. Карданы колонки, как и наконечники – просто заменяются.

Autoleek

Министерство образования и науки РФ

ФГБОУ ВПО «Волгоградский государственный технический университет»

Факультет Автомобильного транспорта

Кафедра «Автомобильный транспорт»

Семестровая работа

по дисциплине «Сертификация транспортных средств»

На тему: «Обеспечение безопасного уровня рулевого управления »

Выполнил: ст. гр. АТ – 500

Джавадов А.А.

Проверил: Шустов А.В.

Волгоград 2013

Введение………………………………………………………………...…………3

1. Назначение рулевого управления……………………………………………..5

2. Конструкция рулевого управления……………………………………………7

3.Основные типы рулевых механизмов и приводов……………………………9

3.1.Рулевой механизм…………………………………………………………..9

3.2.Рулевой привод……………………………………………………………10

4. Перспективы и недостатки развития рулевого управления………………..12

4.1 Гидроусилитель рулевого управления (ГУР)…………………………...12

4.2 Электороусилитель…………………………………………………..……14

4.3 Преимущества и недостатки………………………………………..……15

5.Травмобезопасный рулевой механизм……………………………………….17

6. Технические требования к рулевому управлению по ГОСТ Р 41.12-2001..18

Заключение……………………………………………………………………….22

Список использованных источников…………………………………………...23

Введение

Потребность людей в необходимости ускоренного перемещения по земле привела человечество к созданию различных машин и механизмов, наиболее удобным и любимым из которых стал автомобиль.

Слово ”автомобиль” означает “самодвижущаяся повозка”, хотя в современном понимании автомобилями принято называть только средства передвижения, оснащенные автономными двигателями (внутреннего сгорания, электрическими, паровыми).

Интересную историю развития прошел рулевой механизм автомобиля. Сейчас никого не удивишь его месторасположением - для правостороннего движения - слева, для левостороннего - справа. Но такое расположение рулевого колеса определилось не сразу. Строгое деление проезжей части на левую и правую стороны движения возникло только в XX веке, а на улицах с не слишком оживленным движением продолжали ездить как придется. Вплоть до 60-х годов XX века не было отдано предпочтения движению по определенной стороне улицы. Англия, ее бывшие колонии, Япония до сих пор придерживаются левого, Швеция перестроилась слева направо лишь в 1967 году, Австрия, Венгрия и Чехословакия - в 30-х годах. В Милане ездили по левой стороне, а на остальной территории Италии - по правой. При таком разнообразии правил не могло быть единого взгляда на расположение руля. Когда же вместо рычага появилась рулевая колонка, которая должна была находиться непосредственно перед водителем, конструкторы проявили единодушие - руль устанавливать только справа. Именно поэтому руль, практически у всех первых автомобилей, находился справа. Особый интерес вызывают методы управления первыми автомобилями ХХ века. Рабочее место водителя содержало такое большое количество всевозможных ручек и рычагов управления, что не мудрено было запутаться в них. Одних только тормозных рычагов было три - на трансмиссионный вал, на задние колеса и на так называемый "горный упор" - остроконечный стержень, который опускали на дорогу при движении на подъем, так как тормоза на уклоне автомобиль не удерживали (прообраз современного "стояночного тормоза"). Можно ли дотянуться до рычага, удобно ли ими пользоваться - конструктора это мало интересовало. Рычаг устанавливали там, где этого требовала конструкция. Тем самым водителя обрекали на акробатические движения. Но это длилось не долго. Автомобилей становилось больше, появилась возможность выбора, и уже не все водители были согласны на такую "акробатику". Было бы логичным сосредоточить рычаги и ручки в одном месте, поближе к рукам водителя. Таким местом избрали рулевую колонку. Когда ее наклонили (впервые на автомобиле "Латиль" в 1898 году), то управление передачами с колонки уже не получалось. Одновременно обнаружилось, что скопление рычагов и рукояток около рулевого колеса создает путаницу. Часть их заменили педалями.

В начале ХХ века управление автомобилем требовало от водителя хорошей физической формы. Естественным выходом было увеличение в рулевом управлении передаточного числа, но это не давало решение проблемы. В 1925 году американец Фрэнсис Дейвис запатентовал специальное устройство под названием "гидравлический усилитель рулевого управления". Правда, конструкция мгновенного успеха не обрела. Однако принцип и путь совершенствования наметились: с конца 30-х – начала 40-х годов в Америке, а затем и в Европе конструкторы начинают ставить ГУР на некоторые свои модели автомобилей. Сегодня этим устройством оснащается весь грузовой автотранспорт и немалая доля легкового.

1. Назначение рулевого управления

Измене­ние направления движения автомобиля осуществляется поворотом относитель­но его продольной оси управляемых ко­лес, которыми, как правило, являются передние колеса.

Вследствие поворота управляемых ко­лес вектор скорости каждого из них, па­раллельный продольной оси автомоби­ля, перестает совпадать с плоскостью вращения колес. В результате в контак­те колес с дорогой возникают боковые силы, перпендикулярные плоскости вра­щения колес. Эти боковые силы застав­ляют управляемые колеса и автомобиль в целом отклоняться от прямолинейно­го движения и совершать поворот.

Руле­вое управление обеспечивает необходи­мое направление движения автомобиля путем раздельного и согласованного по­ворота его управляемых колес. Сово­купность механизмов, служащих для по­ворота управляемых колес, называется рулевым управлением.

Рулевое управление служит для изменения направления движения автомобиля. При неподвижной передней оси изменение направления движения автомобиля осуществляется поворотом передних управляемых колес.

Рулевое управление со­стоит из рулевого колеса, соединенного валом с рулевым механизмом, и руле­вого привода. Иногда в рулевое упра­вление включен усилитель.

Рулевым механизмом называют замедляющую передачу, преобразующую вращение вала рулевого колеса во вра­щение вала сошки. Этот механизм уве­личивает прикладываемое к рулевому колесу усилие водителя и облегчает его работу.

Рулевым приводом называют систему тяг и рычагов, осуществляющую в сово­купности с рулевым механизмом пово­рот автомобиля.

Для того чтобы при движении автомобиль совершил поворот без бокового скольжения колес, все они должны катиться по дугам разной длины, описанным из центра поворота “ О ” (рис.1). При этом передние управляемые колеса должны поворачиваться на разные углы. Внутреннее по отношению к центру поворота колесо должно поворачиваться на угол альфа-В, наружное - на меньший угол альфа-Н. Это обеспечивается соединением тяг и рычагов рулевого привода в форме трапеции. Основанием трапеции служит балка переднего моста автомобиля, боковыми сторонами являются левый и правый поворотные рычаги, а вершину трапеции образует поперечная тяга, которая соединяется с рычагами шарнирно. К рычагам жестко присоединены поворотные цапфы колес.

Рисунок 1- Схема поворота автомобиля

где:1 -балка переднего моста автомобиля;2 и 4- поворотные рычаги; 3-поперечная тяга;5-поворотные цапфы колес;6-продольная тяга.

2. Конструкция рулевого управления

Расположение и взаимодействие деталей рулевого управления, не имеющего усилителя, можно рассмотреть на схеме (рис.2.а). Здесь рулевой механизм состоит из рулевого колеса, рулевого вала и рулевой передачи, образованной зацеплением червячной шестерни (червяка) с зубчатым стопором, на вал которого крепится сошка рулевого привода. Сошка и все остальные детали рулевого управления: продольная тяга, верхний рычаг левой поворотной цапфы, нижние рычаги левой и правой поворотных цапф, поперечная тяга составляют рулевой привод.

Поворот управляемых колес происходит при вращении рулевого колеса, которое через вал передает вращение рулевой передаче. При этом червяк передачи, находящийся в зацеплении с сектором, начинает перемещать сектор вверх или вниз по своей нарезке. Вал сектора приходит во вращение и отклоняет сошку, которая своим верхним концом насажена на выступающую часть вала сектора. Отклонение сошки передается продольной тяге, которая перемещается вдоль своей оси. Продольная тяга связана через верхний рычаг с поворотной цапфой, поэтому ее перемещение вызывает поворот левой поворотной цапфы. От нее усилие поворота через нижние рычаги и поперечную тягу передается правой цапфе. Таким образом происходит поворот обоих колес.

Управляемые колеса поворачиваются рулевым управлением на ограниченный угол, равный 28-35°. Ограничение вводится для того, чтобы исключить при повороте задевание колесами деталей подвески или кузова автомобиля.

Конструкция рулевого управления очень сильно зависит от типа подвески управляемых колес. При зависимой подвеске передних колес в принципе сохраняется схема рулевого управления, приведенная на (рис. 2.(а)), при независимой подвеске (рис. 2.(б)) рулевой привод несколько усложняется.

Рисунок 2-Схемы рулевого управления:

а) при зависимой подвеске передних колес

где: 1-рулевоя передача; 2-рулевой вал; 3-рулевое колесо; 4- поворотные цапфы; 5и 7-поворотные рычаги; 6-поперечная тяга; 8-продольная тяга; 9 –сошка;

б) при независимой подвеске

где: 1-сошка; 2-поворотные рычаги цапф; 3 и 6- боковые тяги; 4-основная поперечная тяга; 5-маятниковый рычаг.

Лекция 14. Рулевое управление.

Назначение рулевого управления.

Рулевое управление обеспечивает необходимое направление движения автомобиля. Рулевое управление включает рулевой механизм, который осуществляет передачу усилия от водителя к рулевому приводу, и рулевой привод, который осуществляет передачу усилия от рулевого механизма к управляемым колесам. Каждое управляемое колесо установлено на поворотной цапфе (поворотном кулаке) 13 (рис. 1), соединенной с балкой 11 моста шкворнем 8 . Шкворень неподвижно закреплен в балке, и его верхний и нижний концы входят в проушины поворотной цапфы. При повороте цапфы за рычаг 7 она вместе с установленным на ней управляемым колесом поворачивается вокруг шкворня. Поворотные цапфы соединены между собой рычагами 9 и 12 и поперечной тягой 10 . Поэтому управляемые колеса поворачиваются одновременно.


Рис. 1. Схема рулевого управления

Поворот управляемых колес осуществляется при вращении водителем рулевого колеса 1 . От него вращение передается через вал 2 на червяк 3 , находящийся в зацеплении с сектором 4 . На валу сектора закреплена сошка 5 , поворачивающая через продольную тягу 6 и рычаг 7 поворотные цапфы 13 с управляемыми колесами.

Рулевое колесо 1 , вал 2 , червяк 3 и сектор 4 образуют рулевой механизм, увеличивающий момент, прикладываемый водителем к рулевому колесу для поворота управляемых колес. Сошка 5 , продольная тяга 6 , рычаги 7 , 9 и 12 поворотных цапф и поперечная тяга 10 составляют рулевой привод, передающий усилие от сошки к поворотным цапфам обоих управляемых колес. Поперечная тяга 10 , рычаги 9 и 12 , балка 11образуют рулевую трапецию, обеспечивающую необходимое соотношение между углами поворота управляемых колес.

Управляемые колеса поворачиваются на ограниченный угол, равный, как правило, 28 - 35º. Это сделано для того, чтобы колеса при повороте не касались рамы, крыльев и других деталей автомобиля.

На некоторых автомобилях в рулевом управлении используют усилитель, облегчающий поворот управляемых колес.

Стабилизация управляемых колес.

Силы, действующие на автомобиль, стремятся отклонить управляемые колеса от положения, соответствующего прямолинейному движению. Чтобы препятствовать повороту колес под действием случайных сил (толчков от наезда на неровности дороги, порывов ветра и т.п.), управляемые колеса должны сохранять положение, соответствующее прямолинейному движению, и возвращаться в него из любого другого положения. Эта способность называется стабилизацией управляемых колес. Стабилизация колес обеспечивается наклонами шкворня в поперечной и продольной плоскостях

и упругими свойствами пневматической шины.

Конструкция рулевых механизмов.

Червячно-роликовый рулевой механизм , показанный на рис. 2, выполнен в виде глобоидного червяка 5 и находящемся с ним в зацеплении трехгребневого ролика 8 . Червяк установлен в чугунном картере 4 на двух конических роликовых подшипниках 6 . Беговые дорожки для роликов обоих подшипников сделаны непосредственно на червяке. Наружное кольцо верхнего подшипника запрессовано в гнездо картера. Наружное кольцо нижнего подшипника, установленного в гнезде картера со скользящей посадкой, опирается на крышку 2 , привернутую к картеру болтами. Под фланцами крышки поставлены прокладки 3 различной толщины для регулирования предварительного натяга подшипников.

Червяк имеет шлицы, которыми он напрессован на вал. В месте выхода вала из картера установлен сальник. Верхняя часть вала, имеющая лыску, входит в отверстие фланца вилки карданного шарнира 7 , где закрепляется клином. Через карданный шарнир рулевая пара связана с рулевым колесом.

Вал 9 сошки установлен в картер через окно в боковой стенке и закрыт крышкой 14 . Опорой вала служат две втулки, запрессованные в картер и крышку. Трехгребневый ролик 8 размещен в пазу головки вала сошки на оси с помощью двух роликовых подшипников. С обеих сторон ролика на его ось поставлены стальные полированные шайбы. При перемещении вала сошки изменяется расстояние между осями ролика и червяка, чем обеспечивается возможность регулирования зазора в зацеплении.

Рис. 2. Рулевой механизм автомобиля КАЗ-608 «Колхида»

На конце вала 9 нарезаны конические шлицы, на которых гайкой закреплена рулевая сошка 1 . Выход вала из картера уплотнен сальником. На другом конце вала рулевой сошки имеется кольцевой паз, в который плотно входит упорная шайба 12 . Между шайбой и торцом крышки 14 находятся прокладки 13 , используемые для регулирования зацепления ролика с червяком. Упорную шайбу с комплектом регулировочных прокладок закрепляют на крышке картера гайкой 11 . Положение гайки фиксируют стопором 10 , привернутым к крышке болтами.

Зазор в зацеплении рулевой передачи переменный: минимальный при нахождении ролика в средней части червяка и увеличивающийся по мере поворота рулевого колеса в ту или другую сторону.

Такой характер изменения зазора в новой рулевой передаче обеспечивает возможность неоднократного восстановления необходимого зазора в средней, наиболее подверженной изнашиванию зоне червяка без опасности заедания на краях червяка. Подобные рулевые механизмы используются на автомобилях ГАЗ, ВАЗ с разницей в механизме регулировки зацепления червяка 5 с роликом 8 .

Реечный рулевой механизм (рис. 3, а ). При повороте рулевого колеса 1 шестерня 2 перемещает рейку 3 , от которой усилие передается на рулевые тяги 5 . Рулевые тяги за поворотные рычаги 4 поворачивают управляемые колеса. Реечный рулевой механизм состоит из косозубой шестерни 2 , нарезанной на валу 8 (рис. 3, б ) и косозубой рейки 3 . Вал вращается в картере 6 на упорных подшипниках 10 и 14 , натяг которых осуществляется кольцом 9 и верхней крышкой 7 . Упор 13 , прижатый пружиной 12 к рейке, воспринимает радиальные усилия, действующие на рейку, и передает их на боковую крышку 11 , чем достигается точность зацепления пары.

Рис. 3. Рулевое управление с реечным механизмом:

а – схема рулевого управления; б – реечный рулевой механизм

Винтореечный рулвой механизм (рис. 4) имеет две рабочие пары: винт 1 с гайкой 2 на циркулирующих шариках 4 и поршень-рейку 11 , входящую в зацепление с зубчатым сектором 10 вала сошки. Передаточное отношение рулевого механизма 20:1. Винт 1 рулевого механизма имеет шлифованную с большой точностью винтовую канавку «арочного» профиля. Такая же канавка выполнена в гайке 2 . Винтовой канал, образованный винтом и гайкой, заполнен шариками. Гайка жестко закреплена внутри поршня-рейки стопором.



Рис. 4. Рулевой механизм с встроенным гидроусилителем:

а – устройство; б – схема работы; 1 – винт; 2 – гайка; 3 – желоб; 4 – шарик; 5 – рулевой вал;

6 – корпус клапана управления; 7 – золотник; 8 – сошка; 9 – вал сошки; 10 – зубчатый сектор; 11 – поршень-рейка; 12 – картер-цилиндр; 13 – картер; А и Б – полости цилиндра;

В и Г – шланги входа и выхода масла; Д и Е – каналы.

При вращении винта 1 от рулевого колеса, шарики выходят с одной стороны гайки в желоб 3 и возвращаются по нему в канавки винта с другой стороны гайки.

Зубчатая рейка и зубчатый сектор имеют переменные по толщине зубья, что позволяет регулировать зазор в зацеплении рейка-сектор регулировочным винтом, ввернутым в боковую крышку картера рулевого механизма. На поршне-рейке установлены упругие разрезные чугунные кольца, обеспечивающие его плотную посадку в картере-цилиндре 12 . Вращение рулевого вала преобразуется в поступательное движение поршня-рейки благодаря перемещению гайки по винту. Зубья поршня-рейки в результате поворачивают сектор, а вместе с ним и вал 9 с сошкой 8 . Перед картером рулевого механизма в корпусе 6 установлен клапан управления с золотником 7 . С клапаном управления шлангами В и Г соединен насос гидроусилителя.

Во время движения автомобиля по прямой золотник находится в среднем положении (как показано на рис. 4), и масло из насоса по шлангу Г через клапан управления перекачивается обратно в бачок по шлангу В . При повороте рулевого колеса влево золотник 7 перемещается вперед (на рисунке влево) и открывает доступ масла в полость А по каналу Д , а из полости Б масло идет в полость В и в насос. В результате чего облегчается поворот колеса влево. Если водитель приостановит вращение рулевого колеса, то золотник клапана управления займет среднее положение, и угол, на который повернуты направляющие колеса, останется неизменным.

При повороте рулевого колеса вправо винт с золотником 7 перемещается назад (на рисунке вправо) в результате взаимодействия зубьев поршня-рейки и сектора. Перемещаясь назад, золотник открывает доступ маслу в полость Б через канал Е . В результате давления масла на поршень-рейку уменьшается усилие, которое затрачивается на поворот рулевого колеса. При этом рулевая сошка поворачивается против хода часовой стрелки.

Рулевой привод.

Рулевая трапеция (рис. 5). В зависимости от компоновочных возможностей рулевую трапецию располагают перед передней осью (передняя рулевая трапеция) или за ней (задняя рулевая трапеция). При зависимой подвеске колес применяют трапеции с цельной поперечной тягой; при независимой подвеске – только трапеции с расчлененной поперечной тягой, что необходимо для предотвращения самопроизвольного поворота управляемых колес при колебаниях автомобиля на подвеске. С этой целью шарниры разрезной поперечной тяги должны располагаться так, чтобы колебания автомобиля не вызывали их поворота относительно шкворней. Схемы различных рулевых трапеций показаны на рис. 9.



Рис. 5. Схемы рулевых трапеций

При зависимой и независимой подвесках могут применяться как задняя (рис. 9, а ), так и передняя (рис. 9, б ) трапеции.

На рис. 9, в е приведены задние трапеции независимых подвесок с разным числом шарниров.

Конструкция рулевых приводов при зависимой подвеске. При повороте колес детали рулевого привода перемещаются одна относительно другой. Такое перемещение происходит также при наезде колеса на неровности дороги и при колебаниях кузова относительно колес. Для создания возможности относительного перемещения деталей привода в горизонтальной и вертикальной плоскостях при одновременной надежной передаче усилий соединение осуществляют в большинстве случаев шаровыми шарнирами.

Продольную тягу 1 (рис. 6, а ) рулевого привода делают трубчатой с утолщениями по краям для монтажа деталей двух шарниров. Каждый шарнир состоит из пальца 3 , сухарей 4 и 7 , охватывающих сферическими поверхностями шаровую головку пальца, пружины 8 и ограничителя 9 . При затягивании пробки 5 головка пальца зажимается сухарями, а пружина 8 сжимается. Пружина шарнира не допускает образования зазоров в результате износов и смягчает толчки, передаваемые от колес на рулевой механизм. Ограничитель предотвращает чрезмерное сжатие пружины, а при ее поломках не позволяет пальцу выйти из соединения с тягой. Пружины располагают в тяге относительно пальцев 2 и 3 так, чтобы через пружины передавались усилия, действующие на тягу как от сошки 6 , так и от поворотного рычага.


Рис. 6. Рулевые тяги автомобиля ГАЗ:

а – продольная; б – поперечная

В поперечной продольной тяге шарниры размещают в наконечниках, навинченных на концы тяги. Резьба на концах тяги обычно имеет резное направление. Поэтому вращением тяги 10 (рис. 6, б ) при неподвижных наконечниках 11 можно изменять ее длину при регулировании схождении колес. Пальцы 15 жестко закрепляют в рычагах поворотных цапф. Шаровой поверхностью палец прижимается предварительно сжатой пружиной 12 через пятку 13 к сухарю 14 , установленному внутри наконечника тяги. Такое устройство шарнира позволяет непосредственно передавать усилия от пальца на тягу и в обратном направлении. Пружина 12 обеспечивает устранение в шарнире зазора, обусловленного износом. Таким образом, основное отличие шарниров поперечной тяги от шарниров продольной тяги состоит в том, что в первых не имеется пружин, через которые непосредственно передаются усилия в рулевом приводе.

Шарниры рулевых тяг смазывают через масленки. На некоторых автомобилях в шарниры смазочный материал закладывают при сборке, и пополнять ее в процессе эксплуатации не требуется.

Особенности рулевых приводов при независимой подвеске управляемых колес (рис. 7) . Рулевой привод при независимой подвеске должен исключать произвольный поворот каждого колеса в отдельности при его качании на подвеске. Для этого необходимо возможно близкое совпадение осей качания колеса и тяги привода, что достигается применением разрезной поперечной тяги. Такая тяга состоит из шарнирно соединенных частей, которые перемещаются с колесами независимо одна от другой.

Рис. 7. Схема рулевого привода при независимой подвеске:

1 – стойка; 2 – поворотные цапфы; 3 – рычаг поворотной цапфы; 4 и 9 – боковые тяги;

5 – маятниковый рычаг; 6 – сошка; 7 – рулевой механизм; 8 – средняя тяга.


Похожая информация.