Шины устойчивые к проколам. Технологии изготовления беспроколных шин от разных производителей

Привет мозговелосипедисты ! В данном проекте я буду использовать б/у шины от старого велосипеда, чтобы создать устойчивую к проколам шину для своего велосипеда.

Предыстория: проколов пару шин из-за колючек, которых полно в нашей местности, я решил изготовить шину, которая будет иметь эффективную защиту от проколов.

В этом проекте я использую обычные подручные материалы и предметы из домашнего хозяйства. Это означает, что любой сможет справиться с изготовлением данной шины!

Шаг 1: Требуемые инструменты и материалы

Для выполнения проекта следует использовать:
— 15мм гаечный ключ
— 2 отвертки под винт с плоской головкой (можно использовать нож)
— Нож для резки гипсокартонных листов
— Новая камера
— Старая шина (у меня таких шин накопилась парочка за последнее время).
— Новая или б/у шина

Шаг 2: Снятие колеса с велосипеда

Начните со снятия колеса с велосипеда; используйте 15мм гаечный ключ, чтобы выкрутить гайки, удерживающие колесо на месте. Также убедитесь, что отсоединили тормоза – это облегчит процесс снятия колеса (как показано на фото).

Шаг 3: Снятие камеры с колеса

Теперь вам следует снять камеру.

Выполните следующее: Подденьте шину с помощью двух отверток, т.е. вставьте отвертку в зазор между шиной и ободом, а затем потяните вниз. Далее вставьте другую отвертку на расстояние примерно 5см от местоположения первой отвертки, и проведите отверткой вокруг шины, чтобы снять ее.

Шаг 4: Формовка старой шины, чтобы подошла

На данном шаге вам следует минимизировать размер старой шины так, чтобы она могла вместиться в новой или б/у шине. Для этой процедуры я использовал острый нож – я вырезал и удалил кромки шины (как показано на фото). Вам следует убедиться, что единственная часть старой шины, которую следует использовать – это плоская секция шины. Как видно на второй фотографии, я сделал ошибку при отрезании шины – она получилась слишком большой и не входила в новую шину. Поэтому я подрезал б/у шину, чтобы она идеально вместилась.

Шаг 5: Вставка вырезанной шины

На данном шаге вам потребуется вставить вырезанную шину в новую или б/у шину, которую следует установить назад на велосипед. Это просто выполнить, вставив вырезанную шину в шину, которая будет использоваться на велосипеде. Однако при вставке шины вы столкнетесь с проблемой, что шина не полностью входит в шину, которую вы будете использовать повторно на велосипеде. Следовательно, шину, которую следует вставить, должна обрезаться. Для подрезания шины я использовал нож для резки гипсокартонных листов; сначала я измерил перекрывающиеся части и затем обрезал так, чтобы шина отлично подошла!

Шаг 6: Замена камеры

Шаг 7: Установка шины в обод колеса

Для начала убедитесь, что воздушный вентиль камеры находится на одной линии с отверстием для вентиля в ободе колеса. Далее вставьте вентиль в отверстие и закрепите шину на обод. Во время данного процесса следует сначала придавить одну сторону шины, а затем другую. Для облечения этой процедуры можно использовать отвертку. Но будьте осторожны, чтобы не проколоть шину.

Шаг 8: Накачка шины

После установки камеры в шину ее необходимо накачать.

Шаг 9: Установка колеса на велосипед

После накачки колеса установите его назад на велосипед, используя 15мм гаечный ключ для затягивания гаек. Не забудьте подсоединить назад тормоза!

Шаг 10: Заключение

Наконец у вас появился велосипед с шинами, устойчивыми к проколам. Теперь ваш велосипед может не бояться колючек, битых стекол и других острых предметов. Даже в том случае, если шина будет проколота, колесо останется «жестким», а это позволит вам худо-бедно добраться до пункта назначения. Кроме того, такое колесо требует меньшее давление для полной накачки, поскольку вставленная внутрь вырезанная шина занимает часть внутреннего объема колеса.

Данную конструкцию можно усовершенствовать следующим образом:
— Вставьте больше слоев шины – это обеспечит дополнительную устойчивость к проколам.
— Используйте более легкие материалы для снижения веса велосипеда.
— Сделайте шину без камеры, используя только б/у шины.
— Установите переделанные шины на оба колеса велосипеда.

Удачи в езде на велосипеде , и забудьте о проколах!

Легендарное качество шин Michelin известно каждому водителю, однако немногие в точности знаю, как они появляются на свет. Во время посещения журналистами завода в Ольштыне, компания приподняла завесу тайны и рассказала о производстве сельскохозяйственных и индустриальных шин, которые там выпускаются.

Общая площадь завода в Ольштыне составляет 200 га, на которых работают более 4,5 тысячи человек. В год производится 400 тысяч шин, которые доступны в 143 размерах и весят от 23 до 199 кг. Помимо шин под брендом Michelin, на предприятии выпускаются шины под другими марками компании - Kleber и Taurus. Сельскохозяйственные шины Michelin также производит в Труа (Франция) и Вальядолиде (Испания).

Снаружи все шины очень похожи, и если бы не названия брендов, их было бы трудно отличить. Вероятно, это одна из причин, по которым фермеры обращают внимание в основном только на цену. Качество для многих не имеет значения, поскольку оценить его просто не могут и исходят из мнения, что все шины сделаны из резины и примерно одинаковые.

Такое мнение не соответствует действительности, и это подтвердит любой, кто работал в поле на бюджетных шинах и шинах более высокого класса. Иногда даже бывает так, что «бэушные» шины премиум-бренда служат дольше новых дешевых шин, которые при этом покупались как раз ради экономии.

В чем разница между шинами различных брендов? Точно на этот вопрос мы, конечно, не ответим, поскольку это коммерческая тайна каждого производителя. Как бы то ни было, посмотреть на производственный процесс в Ольштыне нам позволили.

Будущие свойства шины во многом зависят от резиновых смесей, используемых при изготовлении различных ее компонентов (брекеров, протектора и т.д.) Во время их создания каучуки смешиваются со специальными маслами, техуглеродом, антиоксидантами и другими добавками. Точный состав, естественно, держится в строжайшем секрете. Готовая смесь попадает в экструдер, где из нее изготавливаются тонкие ленты, которые наматываются на катушки. На этом этапе создаются так называемые сырые шины. Экструдер производит резиновую ленту толщиной порядка 0,1 мм. И толщину, и ширину, конечно, можно менять, что позволяет производить шины различных моделей.

Помимо сырых шин, подготавливается сердечник борта (он удерживает шину на ободе), а также корд - текстильный и металлический. Они составляют основу шины. В этом процессе используется в том числе ткань с диагональным плетением, благодаря чему борт шины такой прочный. На данном этапе они соединяются с другими компонентами, такими как усиливающие полосы и гермослой. Это слой воздухонепроницаемой резины, который можно увидеть, если заглянуть внутрь шины.

По стандартной процедуре крупные сельскохозяйственные и промышленные шины изготавливаются вручную, и усиливающие полосы устанавливаются просто рукой. Однако полтора года назад в Ольштыне было смонтировано инновационное оборудование, которое автоматизировало этот процесс. Комплекс занимает площадь 400 м2 и называется «Крокус». Он управляется двумя людьми, чья работа состоит в основном в управлении автоматической установкой различных элементов сырой шины. В этом им помогает свет лазера. В конце устанавливается протектор, на чью долю приходится до 50% от веса шины. На изготовление сельскохозяйственной шины в зависимости от размера уходит 12-15 минут. Новое оборудование было разработано проектировщиками из Ольштына при поддержке французских инженеров.

На следующем этапе сырая шина отправляется в вулканизационный пресс, в котором обретает свой окончательный внешний вид (во время вулканизации создается внешняя форма шины и рисунок протектора). Этот процесс длится порядка часа при температуре 150-200 градусов и давлении в несколько десятков МПа. Для каждого типоразмера имеется собственная программа вулканизации, которая, естественно, управляется автоматически.

После завершения вулканизации каждая шина проверяется на специальном стенде квалифицированным персоналом. В случае обнаружения каких-либо дефектов шина возвращается для его удаления. Здесь также осуществляются дополнительные выборочные проверки, цель которых оценить работу отдела контроля качества.

«Проектировщики шин Michelin всегда стремятся достичь баланса характеристик, - говорит Адам Воронецкий (Adam Voroniecky), менеджер отделения агрошин Michelin. - В случае с сельскохозяйственными шинами речь идет о долговечности, защите почвы и экономии топлива». В соответствии с этим подходом была в частности разработана технология Ultraflex, по которой изготавливаются шины, работающие при низком уровне давления. Их можно легко отличить по маркировке IF или VF. Первая означает, что шины обладают повышенной эластичностью боковин, а вторая - что их прогибаемость даже еще выше. Что это дает? Такие шины обладают увеличенным пятном контакта с землей, благодаря чему предотвращается скольжение и снижается уплотнение грунта. Помимо этого, шины также отличаются усиленными плечевинами, плоским профилем и новой формой блоков протектора. В производстве, естественно, используется специальный компаунд, отличающийся повышенной термоустойчивостью. Результат - шины Ultraflex выдерживают такие же нагрузки, как стандартные покрышки, но могут эксплуатироваться при сниженном давлении - вплоть до 0,8 бар.

Технология Ultraflex используется в производстве шин серий AxioBib (для тракторов мощностью свыше 220 л.с.), XeoBib (для тракторов мощностью 80-220 л.с.), CerexBib (для комбайнов) и SprayBib (для разбрызгивателей). Последней и самой крупной моделью в этом ряду стал прототип шин AxioBib типоразмера IF850/75R42. Высота этой шины составляет 2,32 метра, а грузоподъемность - до 9,5 тонны.

Во время визита на завод нам также провели демонстрацию качеств промышленных шин линейки Compact Line - Michelin является единственным производителем радиальных шин для компактной индустриальной техники, такой как вилочные погрузчики, востребованные фермерами, занимающимися животноводством. Шины называются BibSteel All-Terrain и BibSteel Hard Surface. Первая модель отличается двойным слоем металлокорда, защитой обода и усиленными боковинами, которые на 2,5 мм толще, чем у шины прошлого поколения - Stabil"X XZSL. У вторых шин прочность даже еще выше. Благодаря этому шины максимально устойчивы к проколам протектора или боковин, что предотвращает простой техники. Помимо этого, в Michelin говорят, что шины Compact Line часто способны прослужить вдвое дольше шин того же размера с диагональной конструкцией.

Для телескопических погрузчиков Michelin предлагает шины серии XMCL, которые эффективны во время работы и на бетоне, и в грязи. Производитель отмечает, что шины характеризуются высокой устойчивостью к проколам и разрывам, а инновационная резиновая смесь также увеличила стойкость к механическим повреждениям и истиранию.

ПРОКОЛОТАЯ ШИНА – ФАКТОР РИСКА

Наличие средств обеспечения безопасности в автомобиле все больше влияет на его потребительские качества. Возможность прокола или разрыва шины – один из постоянно действующих источников беспокойства для водителей.
Полная или частичная потеря давления в проколотой шине увеличивает сопротивление качению, возникающие деформации приводят к трению боковины покрышки о дорожное полотно, что вызывает ее разогрев и разрушение. Шины обычной конструкции при снижении давления ниже определенного уровня не обеспечивают автомобилю необходимую управляемость и работу систем торможения, они могут слететь с обода колеса, вызвать его поломку и стать причиной аварии.

ШИНЫ С ПОДДЕРЖИВАЮЩЕЙ ВСТАВКОЙ

Когда такая бескамерная шина теряет давление, кольцевая вставка, закрепленная на ободе, принимает на себя массу автомобиля. При нормальном давлении вставка не касается покрышки, а при потере давления поддерживает протектор, не позволяя ободу колеса повредить боковины шины.



Было предложено несколько вариантов поддерживающих вставок. Наибольшее распространение получила разработка фирмы Michelin под названием PAX System (PAX) . Она требует применения шин со специальной закраиной, исключающей ее срыв с обода при движении после потери давления, специального колеса с асимметричным ободом для упрощения монтажа пластиковой вставки. С учетом этого требуется устанавливать на автомобиль систему контроля и индикации давления в шинах, так как водители могут не улавливать момент потери давления и совершать маневры, несовместимые с возникающими условиями.
После прокола на них можно проехать до 200 км со скоростью 80 км/ч, сохраняя контроль над автомобилем. Однако из-за оригинальной конструкции покрышки и обода придется ехать на специализированный сервис.
В настоящее время PAX избрали для первичной комплектации автомобилей Audi, Mercedes-Benz, BMW; также ее устанавливают на различные бронированные модели. По сравнению со стандартной, шина не теряет ни в уровне комфорта, ни в сопротивлении качению; имеет высокий индекс нагрузки.
К недостаткам системы PAX относят: увеличение неподрессоренных масс, изготовление колес по новым стандартам, высокую цену.


Разработка фирмы Continental – CSR представляет собой металлическое кольцо специального профиля с эластичной прокладкой-опорой, которое монтируется непосредственно на обод любого штатного колеса.
За счет веса кольца увеличивается неподрессоренная масса колеса, но это незначительно влияет на динамические свойства во время движения автомобиля. В случае резкой или постепенной потери воздуха кольцо будет поддерживать шину, при этом маневренность автомобиля практически останется на прежнем уровне. На спущенной шине с CSR можно проехать до 200 км со скоростью 80 км/ч. Это позволяет доехать до автосервиса, в котором есть необходимое оборудование. Так же, как и при системе PAX, требуется устанавливать систему контроля и индикации давления в шинах. Кольца CSR не требуют замены, если не было разрушения колеса.
Четыре поддерживающих кольца весят меньше, чем одно полноценное запасное колесо и инструменты для его установки. Уменьшение массы транспортного средства, увеличение полезного объема багажника также можно отнести к преимуществам использования данной разработки. CSR одобрена компаниями Bridgestone и Yokohama для использования при производстве своей продукции. Предназначена для оснащения легковых автомобилей, в том числе полноприводных, с высотой профиля шин 55–80%. Компания Daimler-Chrysler после тестирования приняла CSR для первичной комплектации на автомобиль Maybach.


В разработке RRS компании Rodgard езду на спущенных шинах обеспечивает конструкция, состоящая из двух слоев пластиковых колец, устанавливаемых на обод стандартных колес диаметром 13–22,5 дюйма. При проколе внутренняя сторона шины, опираясь на кольца, начинает проворачивать их относительно друг друга и вокруг обода. За счет этого удается избежать перегрева и нагрузок, разрушающих и срывающих спущенную шину с обода колеса.
После прокола на RRS можно проехать 15–50 км. Кольца относятся к устройствам многоразового применения, однако требуют обязательной оценки состояния после езды в аварийном режиме.

САМОНЕСУЩИЕ ШИНЫ С УСИЛЕННОЙ БОКОВИНОЙ



В боковинах самонесущих шин, объединенных названием «Run on Flat» или «Run Flat» (англ. – «езда на спущенной шине»), между слоями корда (каркаса) находится вставка из специальной резины, которая увеличивает их жесткость. При потере давления такая шина определенное время держит форму и не слетает с обода. Сохранение высоких динамических качеств самонесущих шин обусловливает обязательный контроль давления в них, так как водитель может не заметить прокола и совершить опасные маневры. При скорости 80 км/ч на таких шинах можно проехать не менее 80-150 км. В настоящее время технологии изготовления самонесущих шин освоены многими производителями, продукцию которых можно приобрести на российском рынке.


Использование покрышек со свойствами «Run Flat» постоянно растет. Фирма Pirelli выпускает свои модели Eufori@, P Zero Nero, Winter Snowsport, Winter Sottozero с усиленными боковинами (внешне неотличимыми от обычных шин) более чем в 30 типоразмерах с посадочным диаметром 16–20 дюймов. Фирма Goodyear производит 78 моделей шин «Run on Flat» и участвует во многих проектах по поставке самонесущих шин для первичной комплектации автомобилей. Компания Nokian Tyres производит зимние самонесущие шины Nokian Hakkapeliitta 4, Nokian Hakkapeliitta RSi и Nokian WR в трех размерах: 195/55 R16, 205/55 R16 и 225/45 R17.
В свою очередь, автопроизводители, например BMW Group, Daimler-Chrysler, оценили преимущества шин «Run Flat». Концерн BMW успешно применяет их на колесах, в том числе с увеличенным хампом (тип EH2).

СИСТЕМЫ КОНТРОЛЯ ДАВЛЕНИЯ В ШИНАХ

Автомобили с шинами, обеспечивающими безопасную езду при проколах, должны обязательно иметь систему контроля давления в них.

КОСВЕННЫЙ КОНТРОЛЬ НА ОСНОВЕ АНТИБЛОКИРОВОЧНОЙ СИСТЕМЫ (ABS) И СИСТЕМЫ КУРСОВОЙ УСТОЙЧИВОСТИ (ESP)

С помощью таких систем давление в шинах не измеряется, а вычисляется на основе сигналов с датчиков ABS /ESP . При утечке воздуха диаметр шины уменьшается и увеличивается частота вращения колеса, что регистрируется соответствующими датчиками. Сигнал передается на модуль управления, после чего водитель получает акустический и (или) визуальный сигнал предупреждения. Устройства начинают срабатывать на скорости более 15 км/ч и при потере около 30% исходного давления (приблизительно 0,7 бар). Одновременная потеря давления в двух и более шинах не отслеживается.
Несомненное преимущество систем на основе ABS /ESP – отсутствие дополнительных датчиков, устанавливаемых на колесах. Это позволяет экономить на этих элементах и исключает необходимость их балансировки.

ПРЯМОЙ КОНТРОЛЬ ДАВЛЕНИЯ С ИСПОЛЬЗОВАНИЕМ ДАТЧИКОВ, СОВМЕЩЕННЫХ С ВЕНТИЛЕМ КОЛЕСА


Пьезокристаллическая мембрана датчика при изменении внутреннего давления в шине преобразует механические воздействия на него в электрические сигналы, которые после частотной модуляции передаются с помощью антенн (обычно устанавливаются в колесной нише) на частоте 433 МГц на модуль управления и далее на панель приборов или специальный дисплей. В результате выдается визуальный и (или) акустический сигнал. Прочно вмонтированные в датчики незаменяемые батареи служат 5-7 лет. Температура шины отслеживается параллельно и учитывается при оценке давления, но редко выводится на панель приборов.
Для владельцев автомобилей, на которые не были установлены в первичной комплектации подобные системы контроля давления, компании различного профиля предлагают оригинальные устройства.

КОНТРОЛЬ ДАВЛЕНИЯ С ПОМОЩЬЮ ТЕХНОЛОГИИ BLUETOOTH


Компания Pirelli совместно с фирмой Laserline разработала систему беспроводного соединения датчиков давления с мобильными телефонами с поддержкой Bluetooth (см. статью «Автомобильная громкая связь «Bluetooth» в данном сборнике). Чип Bluetooth вмонтирован в систему ниппель/датчик (сенсор) и формирует сигнал, воспринимаемый сотовым телефонным аппаратом. Система автоматически учитывает перепады наружной температуры и атмосферного давления. Каждый сенсор весит 6 г, что не создает проблем при балансировке колес и устанавливается на любой обод со стандартным вентилем. Ведущие производители мобильных телефонов увеличивают объемы продаж аппаратов последнего поколения, с помощью которых можно контролировать давление в шинах.

УНИВЕРСАЛЬНЫЙ КОНТРОЛЬ ДАВЛЕНИЯ И ТЕМПЕРАТУРЫ


В продаже появились универсальные устройства, которые показывают давление и температуру в шинах любой конструкции. Сигнал от датчика на колесе поступает на дисплей с антенной. В зависимости от типа автомобиля и шин пользователю необходимо выставить свое значение нормального давления (максимально 2,8 бара при температуре 22°С). При включении зажигания система проводит самопроверку, выводя на дисплей информацию по каждой шине: давление, температуру, состояние. При отклонении от нормы прибор подаст звуковой сигнал, а на дисплее будет показано, какое колесо спущено.

ОБЩИЕ ВЫВОДЫ

Шины, допускающие движение при нулевом давлении, имеют следующие преимущества :
- значительно повышается уровень безопасности в случае повреждения колеса;
- отсутствует необходимость замены шины на месте прокола;
- появляется дополнительное пространство в багажном отделении и снижается масса автомобиля в связи с отсутствием запасного колеса, домкрата и баллонного ключа;
К недостаткам таких шин относят :
- некоторое снижение комфортности езды за счет повышения жесткости колеса;
- увеличение массы шины и сопротивления качению;
- повышение нагрузки на подвеску и обод колеса;
- необходимость проведения дополнительной регулировки подвески при первичной установке на автомобиль;
- необходимость в некоторых системах использовать специальный обод;
- повышение цены шины на 15–25%;
- необходимость проведения шиномонтажа и установки системы контроля давления в специализированных сервисах.

Все автовладельцы понимают, чем опасен прокол колеса в автомобиле. Ежедневно десятки тысяч человек опаздывают на самолёт, деловую встречу, свидание и т.д из-за поврежденияшины .

С момента изобретения автомобиля , именно на долю шин выпадает наибольшее количество испытаний, начиная от особенностей погодных условий и заканчивая дефектами дорожного покрытия и различными предметами на проезжей части.

Производители шин для автомобилей регулярно совершенствовали конструкцию, делая её более устойчивой к износу и сравнительно недавно в свободной продаже появились автомобильные шины, которые дали возможность машине полноценно передвигаться даже после прокола. Это изобретение возвращает автовладельцам свободу выбора - заменить колесо сейчас или сделать это позже.

Как правило, вес машины ложится не на сами шины, а на находящийся в них воздух (или азот). Степень нагрузки зависит от таких факторов, как объём воздуха между диском и резиной, способности шины к выдерживанию давления, уровень давления воздуха в покрышке. Утечка воздуха чаще всего происходит из-за микропроколов и повреждений, которые проявляются не сразу. Ответственным шагом должна стать система постоянного мониторинга давления в шинах, а окончательной победой – изобретение покрышек, которые бы давали возможность передвигаться, в том числе, даже после полной разгерметизации.

На сегодняшний день идёт разработка технологий в трёх направлениях, которые позволяют автомобилю не терять ходовых качеств после повреждения шины: 1.Система самогерметизации, 2.Система самоподдержки и 3.Система дополнительной поддержки. Первые две уже достаточно широко применяются, а последняя пока существует лишь в экспериментальных вариантах.

1. Шины, способные к самогерметизации.

Особенности данной технологии позволяют шине самостоятельно справиться с проколом, не вынуждая совершать над ней каких-либо действий. Конструкция этих покрышек идентичная с остальными, за исключением лишь находящегося под протектором слоя герметика, способного самостоятельно затянуть проколы, диаметром до 5мм. Сперва, после проникновения инородного предмета в шину, герметик обволакивает его, а после извлечения заполняет образовавшуюся полость. Так как все действия происходят с колесом сразу же после пробоя, водитель даже не заметит произошедшего. Однако, в случаях более серьёзных повреждениях, с которыми герметик не сможет справиться самостоятельно, шина ведёт себя так же, как и обычное пробитоеколесо . Поэтому система предупреждения о снижении давления в этом случае не требуется.
Пример продукции: Continental ContiSeal .

2. Самоподдерживающиеся шины.

Эти шины обладают усиленной конструкцией, которая позволяет им выдерживать нагрузку даже при полном отсутствии давления. Их особенность в том, что в боковинах таких колёс имеется слой каучука, который не позволит шине «сложиться» и не даст боковине разорваться. Уникальная форма опорного кольца позволяет устанавливать такие покрышки на любые стандартныедиски и не даст колесу разбортироваться сразу после сдутия. Пробег такой шины в среднем составляет около 80 км при скорости не выше 90км/ч. Ввиду этого обязательно должна применяться система контроля потери давления, т.к. если проблему не решить вовремя, покрышка будет испорчена окончательно.

Примерыпродукции : Bridgestone RFT (Run Flat Tire), Firestone RFT, Yokohama Run Flat, Pirelli RFT (Run Flat Technology), Goodyear EMT (Extended Mobility Technology), Kumho XRP, Michelin ZP (Zero Pressure) .

3. Шины с дополнительной поддержкой.

Эта система требует использования нестандартных, особых шин идисков , которые должны стать обязательной комплектацией автомобилей будущего. В случае потери давления воздуха в такой покрышке, абсолютно всю нагрузку автомобиля берёт на себя закреплённая на диске так называемая, "кольцевая" конструкция. Основное приемущество этой системы борьбы с проколами - перекладывания несущей функции с шины на диск. Поэтому шина изнашивается намного медленнее и практически не требует замены, равно как и несущий диск.


На сегодняшний день разработанная по данной технологии система Michelin PAX применяется в компаниях Honda и Rolls-Royce , Pirelli разрабатывают собственный вариант технологии, Bridgestone и Continental также занимаются собственными разработками. Недостаток этой системы – несовместимость несущего окольцованного диска со стандартными шинами, что вместе с низкими объёмами производства не позволяет сократить цену на изделия.

Важными показателями надёжности шин являются ремонтопригодность и ресурс. По прогнозам в ближайшем будущем двухсот тыс км достигнет ходимость грузовых шин, ста тыс км - легковых шин и 70-80% - их ремонтопригодность. Поскольку требования к шинным резинам всё более ужесточаются, следует ожидать повышения на 15-20% их прочностных свойств и износостойкости и снижения на 10-15% гистерезисных потерь. Долговечность шин зависит от условий их эксплуатации, при этом более 73% разрушений приходится на износ протектора из-за недостаточного качества протекторных резин. Материалы для шины выбирают в зависимости от режимов работы её элементов, её конструкции и условий эксплуатации, а основным материалом является резина на основе каучуков общего назначения , способная работать от -50 до +150 о С. Совершенствование рецептуры шинных резин идёт в направлении снижения наполнения техуглеродом и маслом, повышения степени сшивания, использования методов многостадийного смешения, применения смесей полимеров и модифицированных каучуков. Общие требования к ним - высокая усталостная выносливость и малое теплообразование.

Усталостная выносливост ь (утомление) выражается в изменении жёсткости, прочности, износостойкости и других свойств резины при воздействии на шину многократных циклических нагружений, приводящем к снижению срока её службы. Многократные циклические нагружения различают по виду деформации, величине амплитудного (наибольшего) напряжения, частоте нагружения, форме циклов (зависимости напряжения от времени) и длительности перерывов между ними. Усталостную выносливость оценивают числом N циклов периодического нагружения при заданном амплитудном напряжении у до разрушения материала в результате термофлуктуационного распада химических связей, активированного механическим полем. Усталостная прочность - это напряжение у N , при котором разрушение идёт после заданного числа циклов. Зависимость между N и у N в режиме у=const выражают графически в виде кривых усталости или аналитически: у N 1 N - 1/в , где у 1 -разрушающее напряжение при одном цикле нагружения образца (исходная прочность резины), в=2-10 - эмпирический показатель выносливости резины. Формула предполагает линейную зависимость кривой усталостной выносливости многослойных резин и резинотканевых материалов до отслаивания в координатах lgу N - lgN .

Теплообразование (повышение температуры) обусловлено высоким внутренним трением в наполненных резинах и проявляется в переходе значительной части механической энергии деформации в теплоту, называемом гистерезисными потерями. При многократных циклических нагружениях вследствие низкой теплопроводности резины высокие гистерезисные потери приводят к её саморазогреву и тепловому разрушению, что снижает усталостную выносливость. Одновременно внутреннее трение способствует затуханию свободных колебаний в резине, тем более сильному, чем больше гистерезисные потери. Поэтому резины с высоким внутренним трением гасят толчки и удары, т.е. являются хорошими амортизаторами.

Резина протектора , кроме общих требований к шинным резинам, должна иметь высокие значения износостойкости и атмосферостойкости, прочности при растяжении и сопротивления раздиру. Различают три вида износа резины, которые легко определяются визуально и существенно влияют на зависимость его интенсивности от коэффициента трения:

  • · скатыванием (последовательным отдиранием) тонкого поверхностного слоя;
  • · абразивным царапанием по твердым выступам поверхности абразива;
  • · усталостным разрушением от механических потерь и теплообразования во время скольжения и качения по неровностям поверхности твердого контртела. Требования к протекторным резинам противоречивы, и те из них, что указаны выше, не совпадают с требованиями обеспечения хороших технологических свойств, высокого коэффициента трения и усталостной выносливости. В каждом случае эти требования дифференцируются в зависимости от типа и размера шин и условий их эксплуатации. Для повышения стойкости радиальных шин к механическим повреждениям целесообразно применение более жёстких резин. С увеличением размера шин возрастает влияние теплообразования на их работоспособность и надёжность и в большегрузных шинах оно становится определяющим. При работе в рудниках протектор должен быть устойчив к проколам и порезам режущими кромками горных пород, а в условиях бездорожья износостойкость определяется упругожёсткостными свойствами.

Особенность отечественной шинной промышленности - применение в производстве 100% СК, поэтому используют их комбинации, компенсирующие недостатки отдельных каучуков и в ряде случаев обеспечивающие улучшение свойств композиций (табл.1.3). Каучуки СКИ и СКД повышают усталостную выносливость протектора. Добавки БСК к СКИ повышают устойчивость смеси к реверсии, а резины - к термоокислительному старению, и улучшают сцепление её с дорогой. Добавки СКИ-3 к БСК и СКД повышают конфекционную клейкость смесей, прочность их связи с брекером и прочность стыка протектора, а добавки до 40мас ч СКД - износостойкость, сопротивление растрескиванию и морозостойкость протекторной резины. Пластичность смесей повышают добавкой мягчителя АСМГ-1 - продукта окисления остатков после прямой перегонки нефти, на поверхность которого нанесено 6-8% техуглерода. Содержание техуглерода и мягчителей определяется требованиями к перерабатываемости смесей и упруго-жёсткостным свойствам вулканизатов.

Таблица 1.3.

Типовые рецепты протекторных резиновых смесей (мас ч)

Наименование компонентов

Большегрузные шины

Грузовые

Легковые

Боковины

шин типа Р

НК или СКИ-3

  • 30,0-

Ускорители вулканизации

Оксид цинка

Стеарин технический

Замедлители подвулканизации

Модифицирующая группа

Противостарители

Воск микрокристаллический

Мягчители

Мягчитель АСМГ-1 или ИКС

Активный техуглерод

Полуактивный техуглерод

Резина для каркаса должна иметь наиболее высокую эластичность, что достигается применением техуглерода средней активности и структурности и снижением его количества. Резина для брекера должна обладать малыми гистерезисными потерями и хорошей теплостойкостью, так как в этой зоне температура шины достигает максимальных значений. Обкладочные резиновые смеси должны иметь высокий адгезионный контакт между дублируемыми элементами при изготовлении полуфабрикатов, сборке и вулканизации покрышек, а также иметь высокую пластичность, клейкость, когезонную прочность и долго пребывать в вязкотекучем состоянии в начале вулканизации. Резины должны иметь высокую прочность и низкие гистерезисные потери, и для них лучше подходят изопреновые каучуки (табл.1.4). Каркасные резины для диагональных шин изготовляют из комбинации СКИ-3 с СКС-30АРКМ-15 в соотношении 1:1 или комбинаций изопреновых каучуков с СКД для повышения морозостойкости и динамической выносливости резинокордных систем или с БСК для снижения их стоимости. Технологические свойства смесей улучшают введением до 5мас ч ароматических мягчителей (пластор 37), а адгезионные свойства - термопластичных мягчителей (канифоль, углеводородные смолы). Для защиты резин от старения применяют комбинации диафена ФП с нафтамом-2 или ацетонанилом Р в соотношении 1:1.

Таблица 1.4.

Типовая рецептура обкладочных резиновых смесей (мас ч)

Наименование компонентов

Большегрузные шины

Грузовые шины типа Р

Легковые шины типа Р

Каучуки НК, СКИ-3 или СКИ-3-01

Ускорители вулканизации

Оксид цинка

Стеарин технический

Модификаторы

Замедлители подвулканизации

Канифоль

Мягчитель АСМГ или ИКС

Противостарители, противоутомители

Активный техуглерод

Полуактивный техуглерод

Белая сажа

Изоляционные резины являются полуэбонитами с твёрдостью 65-70усл ед и идут на изготовление наполнительного шнура и изоляцию проволоки или плетёнки, поэтому должны обеспечивать хорошее сцепление резины с металлом и прочно соединять проволоки друг с другом. Резиновые смеси готовят на основе комбинаций СКИ-3 и СКМС-30АРКМ-15 (3:1) с добавкой до 40мас.ч регенерата при повышенном содержании серы (до 6мас ч ) и техуглерода (до 70мас ч ). Высокое наполнение каучуков определяет необходимость увеличения содержания мягчителей, а адгезионные свойства смеси повышают введением модифицирующей системы из комбинации РУ-1 и гексола ЗВ в соотношении 1:1 (табл.1.5). Промазочные резиновые смеси для обрезинивания тканей крыльевых и бортовых лент (чефера и бязи) должны иметь большую пластичность и хорошую клейкость, от них не требуется высокой прочности резин, а теплостойкость должна быть высокой. Резиновые смеси, приготовленные на основе цис-1,4-полиизопренов (чаще НК) или комбинации НК с СКМС-30АРКМ-15, удовлетворяют этим требованиям. Углеводород каучуков снижают введением до 60мас ч регенерата, а особенности наполнения смеси - до 40мас ч минеральных наполнителей при небольшой добавке полуактивного техуглерода и большом количестве (до 30мас ч ) мягчителей.

Таблица 1.5.

Типовая рецептура изоляционных и промазочных резиновых смесей (мас ч)

Наименование компонентов

Изоляционная смесь

Промазочная смесь

Регенерат

Ускорители

Оксид цинка

Стеарин технический

Замедлитель подвулканизации

Противостарители

Модификаторы

Мягчители жидкие

Битум нефтяной

Канифоль

Минеральные наполнители

Активный техуглерод

Полуактивный техуглерод

Резины для ездовых камер и герметизирующего слоя бескамерных шин должны иметь низкую газопроницамость для сохранения внутреннего давления в шине и быть устойчивы к раздиру и тепловому старению. Камерные резины должны иметь высокую эластичность и низкие значения модуля и остаточной деформации, чтобы уменьшить их разнашиваемость, а также высокие значения прочности стыка, сопротивления проколу и разрастанию трещин. Камерные смеси должны хорошо шприцеваться и иметь небольшую усадку. За рубежом выпускают грузовые камеры из БК (табл.1.6). Отечественные смеси для профилирования легковых и грузовых камер массового ассортимента, изготовления пятки вентиля и клеёв готовят на основе комбинаций СКИ-3 с СКМС-30АРК или 100% БК-1675Т с добавкой двух мас ч ХБК. Для шин с регулируемым давлением и морозостойких рекомендована камерная резиновая смесь на основе СКИ-3, СКМС-30АРК и СКД. Когезионная прочность смесей повышается введением промоторов, а технологические свойства улучшаются большим ассортиментом технологических добавок. Герметизирующий слой бес-камерных шин изготавливают с применением галоидированных БК, например: ХБК - 75, эпихлоргидриновый каучук - 25, техуглерод N762 - 50, стеариновая кислота - 1, алкилфенолформальдегидная смола - 3,3; дибутил-дитиокарбамат никеля - 1, оксид магния - 0,625; оксид цинка - 2,25; ди-(2-бензтиазо-лил)дисульфид - 2, сера - 0,375; 2-меркапто-1,3,4-тиодиазол-5-бензоат - 0,7. Разработана резина на основе комбинации ХБК и СКИ-3 в соотношении 1:1.

Таблица 1.6.

Рецепты камерных резиновых смесей на основе БК зарубежных фирм (мас ч)

Наименование компонентов

Эссо-бутил 268

Полисар-бутил 301

Техуглерод N762 / N550

Техуглерод N660

Техуглерод N330

Парафиновое масло

Парафино-нафтеновое масло

Стеарин технический

Сплав Амберол ST-137Х со стеарином (60:40)

Оксид цинка

Сера / тиурам

Альтакс / каптакс

Клеевые резиновые смеси идут на приготовление 20% бензинового клея, который при промазке резинового фланца вентиля образует плёнку с высокой клейкостью и малой усадкой, способную надёжно соединять его с поверхностью камеры и совулканизовывать с дублируемой резиной. Отечественную клеевую смесь готовят на основе 100мас ч бромбутилкаучука БК-2244 с эффективной вулканизующей группой из серы, тиазола и тиурама Д и 60 мас ч полуактивного техуглерода. Фирма "Эссо" рекомендует аналогичный состав смеси для клея на основе БК (мас ч ): бутил 218 - 100, техуглерод N762 - 40, техуглерод N550 - 20, парафиновое масло - 20, оксид цинка-5, смола ST-137X - 20, сера - 2, тиурам Д - 2, меркаптобензтиазол - 0,5. Смола ST-137X повышает аутогезию клея.

Вентильные резины - высокомодульные с повышенной твёрдостью, применяются для изоляции пятки вентиля, обеспечивая прочную связь с латунным корпусом вентиля и совулканизацию дублируемых резин с клеевой резиновой смесью. Отечественную вентильную резину готовят на основе СКИ-3 и хлорбутилкаучука в соотношении 3:1, а зарубежные - на основе БК (табл.1.7).

Таблица 1.7.

Рецепты вентильных резиновых смесей (масс ч)

Диафрагменные резины должны иметь высокие значения прочности на разрыв и раздир при высоких температурах, эластичности, теплопроводности и усталостных свойств. Для них берут БК с низкой вязкостью и повышенной непредельностью (БК-2045, БК-2055) с введением 10мас ч хлоропренового каучука (наирит А) в качестве активатора вулканизации алкилфенол-формальдегидной смолой (SP-1045, США). Резиновые смеси для ободных лент изготавливают на основе 100мас ч каучука СКМС-30АРКМ-27, а для снижения себестоимости вводят продукты переработки изношенных шин: регенерат и эластичные наполнители - резиновую крошку и диспор.

Технологические свойства шинных резиновых смесей включают реологические , к которым следует отнести также их вулканизуемость, и адгезионные свойства, а поведение их при формовании оценивают соотношением пластической и высокоэластической частей общей деформации. Пластичность характеризует лёгкость деформирования резиновых смесей и способность их сохранять форму после снятия деформирующей нагрузки, а эластическое восстановление (обратимая часть деформации) - сопротивление необратимому изменению, обусловленное их вязкостью. Изменение пластичности материала в зависимости от температуры определяет его термопластичность и способность к формованию. Полное представление о пластоэластических свойствах смесей получают из их зависимостей от температуры и скорости деформации.

При вулканизации резиновых смесей уменьшаются пластические и растут высокоэластические свойства, поэтому вулканизуемость и оценивают по их изменению при нагревании. При переработке на технологическом оборудовании и хранении может произойти нежелательное изменение их пластоэластических свойств, называемое подвулканизацией или преждевременной вулканизацией . Склонность к подвулканизации характеризуют временем, в течение которого смесь при 100 о С не изменяет пластоэластические свойства, и оценивают:

  • · по изменению высоты образца при сжатии между плоскопараллельными плитами в условиях испытания на сжимающем пластометре;
  • · по сопротивлению образца сдвигу между подвижной и неподвижной поверхностями при испытании на вискозиметре Муни при 100 или 120 о С;
  • · по скорости истечения под давлением через калиброванные отверстия;
  • · по скорости вдавливания под нагрузкой твердого наконечника.

Реологические свойства резиновых смесей оценивают при проведении научных исследований их вязкости при различных температурах, напряжениях и скоростях сдвига. Для этого используют метод капиллярной вискозиметрии и определяют скорость истечения под давлением через калиброванные отверстия. Показатель текучести расплава (ПТР) характеризует массу полимерного материала в граммах, которая выдавливается за 10 мин через капиллярное отверстие диаметром 2,095 мм и длиной 8 мм стандартного прибора при заданной температуре (170-300 о С) и нагрузке (от 300г до 21,6кг ). Для оценки склонности резиновых смесей к подвулканизации применяют ротационные вискозиметры Муни , а для реокинетических исследований - вибрационные реометры . Высокоэластические свойства до, во время и после вулканизации одного образца смеси изучают на анализаторе перерабаты-ваемости резин RPA-2000, разработанном фирмой ALPHA Technologies.

Клейкость резиновых смесей - адгезионное свойство, характеризующее способность к прочному соединению двух образцов, что необходимо при изготовлении изделий из отдельных невулканизованных деталей (конфекции изделий ). Внешняя склеивающая способность, обусловленная силами, посредством которых сцепляются разнородные тела, называют адгезией . При разной природе соприкасающихся поверхностей говорят об аутогезии , а сцепления макромолекул одной природы под действием сил притяжения - о когезии . Клейкость оценивают силой, необходимой для расслаивания образцов, дублированных под определенной нагрузкой в течение заданного времени.

Важной особенностью механических свойств резин является релаксация напряжения , проявляющаяся в уменьшении напряжения в образце во времени при неизменном значении деформации до конечного значения - равновесного напряжения у ? , которое определяется густотой вулканизациионной сетки. Скорость релаксации напряжения определяется соотношением энергии межмолекулярного взаимодействия в резине и энергии теплового движения сегментов макромолекул. Чем выше температура, тем энергичнее тепловое движение сегментов макромолекул и тем быстрее протекают релаксационные процессы в деформированной резине. Поскольку равновесие между деформацией и напряжением установливается медленно, резина обычно работает в неравновесном состоянии , и напряжения при её деформации с постоянной скоростью будут зависеть от скорости деформирования.

Деформирование резины с бесконечно малой скоростью , при которой успевают проходить релаксационные процессы, описывается линейной зависимостью истинного напряжения от величины деформации. Коэффициент пропорциональности между истинным напряжением и относительной деформацией называется равновесным модулем (модулем высокоэластичности), который не зависит от времени: E ? =P . е о /S о (е -е о - исходная площадь поперечного сечения образца; е о - начальная длина образца; е - длина деформированного образца. Равновесный модуль резины характеризует густоту вулканизационной сетки: E ? =3сRT/M c , где M c - молекулярная масса отрезка макромолекулы, заключенная между узлами пространственной сетки; с - плотность полимера; R - газовая постоянная; T - абсолютная температура. Для установления истинного равновесия в резине требуется длительное время. Поэтому определяют условно-равновесный модуль путем измерения напряжения при заданной степени деформации после завершения основных релаксационных процессов (через 1ч при 70 о С) или измерения деформации образца при заданной нагрузке после завершения ползучести (через 15 мин после нагружения).

Испытания резины на разрыв проводят стандартным методом однократного растяжения образцов в виде двухсторонних лопаток с постоянной скоростью (500 мм/мин ) до разрыва при заданной температуре для наглядной оценки её специфических свойств. Зависимость напряжения от деформации с постоянной скоростью сложна и снижается при повторной деформации, показывая своеобразное её "размягчение" - эффект Патрикеева-Маллинса. Прочность резины при растяжении f p вычисляют как отношение нагрузки Р р , вызвавшей разрыв образца, к первоначальной площади S o поперечного сечения в участке разрыва: f p р /S o . Относительное удлинение при разрыве l р выражают отношением приращения длины рабочего участка в момент разрыва (е р о ) к первоначальной длине е о : l р =[(е р -е о )/е о ] . 100% , а относительное остаточное удлинение после разрыва - отношением измене-ния длины рабочего участка образца после разрыва к первоначальной длине.

Условное напряжение при заданном удлинении f е , характеризующее жёсткость резины при растяжении, выражают значением нагрузки при этом удлинении Р е , отнесенной к единице площади S o первоначального сечения образца: f е е /S o . Обычно вычисляют условные напряжения при деформациях 100, 200, 300 и 500% и называют модулями резины при заданных удлинениях. Дополнительная характеристика резины - истинная прочность при растяжении , рассчитанная с учетом изменения площади поперечного сечения образца к моменту разрыва при условии неизменности деформируемого образца. Влияние температуры оценивают отношением показателей прочности при повышенной или пониженной и при комнатной температуре, которое называют соответственно коэффициентом теплостойкости и морозостойкости . Коэффициент теплостойкости определяют отношением показателей прочности при растяжении и относительного удлинения, а морозо-стойкости - отношением показателей растяжений при одинаковой нагрузке.

Работа деформации измеряется площадью под кривой нагружения образца и превращается в энергию упругости резины, часть которой релаксирует и необратимо рассеивается в виде тепла внутреннего трения. Поэтому работа при разгрузке образца будет меньше работы, затраченной на его деформацию. Отношение работы, возвращённой деформированным образцом, к работе, затраченной на его деформацию, определяет полезную упругость резины , а отношение рассеянной энергии к работе деформации - потери энергии на гистерезис , которые пропорциональны площади гистерезисной петли. Для разных резин гистерезисные потери могут колебаться от 20 до 95%. Способность поглощать и возвращать механическую энергию - одна из отличительных свойств резины. Гистерезисные потери чаще оценивают величиной эластичности по отскоку , которая представляет собой отношение энергии, возвращённой образцом после удара по нему специального бойка, к энергии, затраченной на удар. Затраченная энергия определяется массой и высотой установки бойка маятника относительно образца, а возвращённая энергия измеряется высотой отскока бойка после удара.

Сопротивление резины раздиру характеризует влияние на её разрушение местных повреждений и представляет собой разрывную нагрузку при скорости деформации 500 мм/мин , отнесённую к толщине надрезанного образца стандартизованных толщины, формы и глубины надрезов.

Твёрдость резины характеризует её способность противостоять внедрению твёрдого индентора под действием заданного усилия. Наиболее распространён метод, заключающийся во вдавливании стандартной иглы твердомера Шора А в образец резины толщиной не менее 6 мм под действием пружины, рассчитанной на определенное усилие. Результаты испытания выражают по шкале в условных единицах от нуля до 100. При высокой твёрдости (показатель 100) игла не погружается в образец, а твёрдость резины колеблется в широких пределах: 15-30 - очень мягкая, 30-50 - мягкая, 50-70 - средняя, 70-90 - твёрдая и более 90 - очень твёрдая резина. Международной организацией по стандартизации (ИСО) рекомендован метод, учитывающий релаксационные процессы и трение, по которому твёрдость оценивают по разности глубин погружения в образец шарика диаметром 2,5 мм под действием контактной (0,3Н ) и основной (5,5Н ) нагрузок. Глубина погружения измеряется в международных единицах IRHD или сотых долях мм от нуля, что соответствует твёрдости резины с модулем Юнга (величина, близкая к равновесному модулю), равным нулю, и до 100 - с модулем Юнга, равным бесконечности. Показатели твёрдости близки к условным единицам твёрдости по Шору А . Твёрдость быстро измеряется, а её показатели очень чувствительны к изменению и состава, и технологии изготовления резины.

Динамические свойства резин определяют их поведение при переменных внешних механических воздействиях. Важным показателем жёсткости резины при периодическом гармоническом нагружении является динамический модуль Е дин - отношение амплитуды напряжения f о к амплитуде деформации e о (Е дин =f о /e о ). Определяют также относительный гистерезис Г - долю общей энергии W на деформацию q за цикл, рассеиваемой в виде механических потерь: Г=q /W=2q дин e о 2 . Гистерезисные потери резины в условиях гармонических периодических деформаций характеризуют модулем внутреннего трения К . Это удвоенное значение механических потерь за цикл при амплитуде динамической деформации, равной единице, т.е. К=2q /e о 2 , тогда Г=К/Е дин .

Утомлением (динамической усталостью ) называют необратимые изменения структуры и свойств резин под действием механических деформаций совместно с немеханическими факторами (свет, тепло, кислород), приводящие к их разрушению. В резинах, подвергаемых постоянной статической деформации или нагрузке, накапливается остаточная деформация е ост . Определяют её путем сжатия на 20% образцов цилиндрической формы и выдержки в сжатом состоянии при нормальной или повышенной температуре заданное время: е ост =(h o -h 2 / h o -h 1 ) . 100% , где h o - первоначальная высота образца; h 1 - высота сжатого образца; h 2 - высота после снятия нагрузки или деформации и отдыха.

Усталостная (динамическая) выносливость N характеризуется числом циклов многократных деформаций образцов до их разрушения. Переменными условиями при испытании могут быть амплитуда деформации, амплитуда нагрузки и частота деформации. Разработано большое число методов испытания резин на усталостную выносливость. Широко применяют испытания на многократное растяжение до разрушения образцов резин в виде двухсторонних лопаток. Стандартизован метод испытания на многократное сжатие до разрушения образцов в виде массивных цилиндров, внутри которых замеряют температуру, характеризующую теплообразование за счет гистерезисных потерь и затруднений отвода тепла в окружающую среду. Часто проводят испытания резин на сопротивление образованию и разрастанию трещин в образцах, подвергаемых многократному изгибу и имеющих зоны повышенной концентрации напряжений, в которых и происходит их разрушение. При испытаниях на сопротивление разрастанию трещин наблюдают за ростом до определенного предела повреждения, которое наносят на испытуемый образец путем прокола или надреза, а при испытании на сопротивление образованию трещин определяют число циклов деформации до начала разрушения образца - появления на нём первичных трещин.

Износостойкость резин характеризуют истираемостью , котороя представляет собой убыль объёма при трении о твёрдую поверхность за счет износа путем отделения мелких частиц материала, приходящуюся на единицу работы трения при заданном режиме их испытания. Истирание является сложным процессом, механизм которого существенно зависит от свойств резины, поверхностей трения и условий их взаимодействия. В местах контакта неровностей поверхности материалов возникают местные напряжения и деформации. При трении резины о поверхности, имеющие очень острые и твердые грани, происходит абразивный износ (истирание "микрорезанием" ). При скольжении резины по шероховатой истирающей поверхности без острых режущих выступов происходит многократное нагружение зон контакта, которое приводит к усталостному износу , наиболее характерному для резиновых изделий. При трении по относительно гладким поверхностям с высоким значением коэффициента трения между резиной и истирающей поверхностью, когда контактные напряжения достигают значений прочности резины, наблюдается интенсивный когезионный износ (истирание "скатыванием"). Для оценки истираемости резин используют различные приборы, в котоых проводят испытание образцов строго определённой формы в условиях трения скольжения или качения с проскальзыванием. Образцы подвергают истиранию на абразивной шлифовальной шкурке (абразивный износ) или на металлической сетке (усталостный износ). Постоянными величинами при испытании являются скорость скольжения и нагрузка на образец. Изменение объема образцов оценивают по потерям массы, а работу трения вычисляют, зная силу трения и длину пути, проходимого образцом за время испытания. Существуют и другие более специфические методы лабораторных и стендовых испытаний.

Лабораторные испытания позволяют строго регламентировать и упрощать условия деформации и получать хорошо воспроизводимые результаты в отличие от результатов эксплуатационных испытаний. Поэтому они являются первым и основным этапом процесса разработки новых или контроля качества существующих видов резиновых изделий.