Параметры диагностики двигателя. Описание, фото и видео

Диагностирование тормозной системы.

Все работы по техническому обслуживанию тормозной системы проводят в объеме ЕО, ТО-1, ТО-2. При ежедневном обслуживании проверяют действие тормозной системы во время движения автомобиля, герметичность соединений в трубопроводах и узлах гидропривода. Утечку жидкости определяют по потекам в местах соединений.

При первом техническом обслуживании в дополнение к работам ЕО производят диагностические работы на постах по оценке эффективности действия тормозов, свободного и рабочего хода педали тормоза и рычага стояночного тормоза. При необходимости после диагностирования проводят регулировочные работы, крепежные работы по всем узлам привода, доливают и прокачивают жидкость в гидроприводе, смазывают механические сочленения педали, рычагов и других деталей привода.

При втором техническом обслуживании проводят работы в объеме ЕО, ТО-1 и дополнительно проверяют состояние тормозных механизмов колес при их полной разборке, заменяют изношенные детали (колодки, тормозные барабаны и др.) собирают и регулируют тормозные механизмы. Прокачивают гидропривод тормозов, проверяют работу компрессора и регулируют натяжение его приводного ремня, регулируют привод стояночного тормоза.

Диагностирование тормозной системы автомобилей предусматривается в объеме работ ТО-1 и ТО-2 в зависимости от принятого технологического процесса технического обслуживания на данном предприятии. Диагностические работы проводят перед выполнением очередного ТО-1 на специализированных постах или на первом посту при поточном способе проведения ТО-1. В случае выполнения ТО-2 и устранения неисправностей по тормозной системе диагностирование рекомендуется проводить после выполнения указанных работ.

В объем диагностических работ по тормозной системе входят проверка свободного хода педали тормоза, определение тормозных сил на колесах, времени срабатывания привода, одновременности действия тормозов, усилия на тормозной педали, эффективности действия стояночного тормоза.

Основными показателями состояния тормозной системы, которые определяют при выполнении перечисленных работ, являются тормозной путь или установившееся замедление при торможении, одновременность затормаживания всех колес и эффективность действия стояночного тормоза по обеспечению неподвижного состояния автомобиля на уклоне.

Надежность работы тормозных систем автомобиля зависит от состояния ее узлов и технического обслуживания. В процессе эксплуатации автомобиля периодически проверяется (ежедневное обслуживание) уровень тормозной жидкости в бачке главного тормозного цилиндра, герметичность гидравлического привода тормозов, а также исправность рабочей тормозной системы и работоспособность стояночной.

Регулировка зазора между толкателем и поршнем главного цилиндра. С целью предотвращения самопроизвольного притормаживания автомобиля необходимо, чтобы между толкателем и поршнем главного цилиндра тормозов был зазор 1,5 -- 2,5 мм, что соответствует свободному ходу тормозной педали 8 -- 14 мм.

При регулировке свободного хода педали разъединяют тормозную педаль 6 (рис. 8) с тягой 4, расшплинтовав и вынув соединяющий их палец. Проверяют положение педали.

Рис. 8.

Под действием стяжной пружины 5 педаль должна упираться в резиновый буфер, укрепленный под наклонным полом кабины автомобиля. Отворачивают контргайку 3, ввертывают тягу 4 педали в толкатель 2 поршня главного тормозного цилиндра 1 таким образом, чтобы при крайнем переднем положении поршня ось отверстия тяги была смещена назад и не доходила до оси отверстия педали на 1,5 -- 2,5 мм. Не нарушая этого положения, надежно стопорят соединительную тягу 4 педали в толкателе 2 контргайкой 3. Совмещают отверстия педали и соединительной тяги, вставляют палец и за-шплинтовывают его.

Заполнение гидропривода рабочей тормозной системы жидкостью (прокачка). Тормозную систему прокачивают при замене жидкости или при попадании в гидравлическую систему воздуха вследствие замены изношенной детали или узла, вызывающего разгерметизацию системы. Гидравлическая тормозная система имеет два независимых контура, которые прокачивают отдельно, когда двигатель не работает и в усилителях отсутствует разрежение. Во время прокачки поддерживают необходимый уровень тормозной жидкости в главном цилиндре, не допуская "сухого дна".

Перед прокачкой отвертывают крышку бачка главного цилиндра и заливают тормозную жидкость "Роса", "Томь" или "Нева". Нажимают несколько раз на тормозную педаль, чтобы заполнить тормозной жидкостью полости главного цилиндра. Снимают с клапанов прокачки защитные колпачки.

В тормозной системе автомобиля ГАЗ-33-07 имеется шесть точек прокачки. Начинают прокачку системы с узлов заднего контура: сначала гидровакуумный усилитель, а затем колесные цилиндры тормозных механизмов. При этом прокачивают сначала правый, а затем левый тормоз. Прокачку узлов переднего контура ведут в той же последовательности, что и заднего контура.

Последовательность прокачки каждой точки: надевают на головку клапана прокачки резиновый шланг для слива тормозной жидкости; свободный конец шланга опускают в прозрачный сосуд с тормозной жидкостью (рис. 9); отвертывают клапан прокачки на 1/2-- 3/4 оборота; прокачивают систему; нажимая на тормозную педаль и отпуская ее несколько раз до прекращения выделения пузырьков воздуха. При последнем нажатии на тормозную педаль, не отпуская ее, плотно завертывают клапан прокачки. Отпускают педаль, снимают шланг и надевают защитный колпачок на головку клапана прокачки.

Рис. 9.

В такой же последовательности прокачивают другие точки гидропривода. При этом своевременно доливают жидкость в бачок главного цилиндра, не допуская "сухого дна". При неисправности только в одном контуре всю систему не прокачивают, а ограничиваются прокачкой только поврежденного контура.

Во время прокачки в контурах гидропривода возникает разность давлений, под действием которой перемещаются поршни сигнализатора, и при включенном зажигании на панели приборов загорается красная лампа. Чтобы погасить красную лампу, возвращают поршни сигнализатора в исходное положение.

При прокачке тормозной системы, а также при неисправности гидропривода, вызывающей утечку тормозной жидкости, или при образовании паровых пробок в одном из контуров раздельного привода срабатывает сигнализатор и на панели приборов загорается красная лампа. После устранения неисправности и прокачки неисправного контура контрольную лампу гасят. Для этого при включенном выключателе зажигания снимают колпачок с клапана прокачки (колесного цилиндра или гидровакуумного усилителя) контура, который был исправным, и надевают на клапан прокачки резиновый шланг, опустив свободный конец в сосуд. Вывертывают на 1,5 -- 2 оборота клапан прокачки и плавно нажимают на тормозную педаль до тех пор, пока не погаснет контрольная лампа на панели приборов. Удерживая педаль в этом положении, завертывают клапан прокачки. Для возвращения поршней сигнализатора в исходное положение, когда прокачивают всю систему, начиная ее с заднего контура, отворачивают клапан прокачки заднего контура.

Регулировка зазора между колодками и тормозными барабанами. Зазор регулируют при остывших барабанах и правильно отрегулированных подшипниках колес. Существуют две регулировки тормозов: текущая и полная.

Текущую регулировку осуществляют эксцентриками 16 (см. рис. 2) при вращении колеса рукой. При регулировке передних, колодок тормозных механизмов вращают колеса вперед, а при регулировке задних колодок тормозных механизмов -- назад.

Для регулировки тормозов вывешивают колесо с помощью домкрата. Вращая колесо, слегка поворачивают эксцентрик колодки в направлении стрелок, показанных на рис. 2, пока колодка не затормозит колесо. Постепенно опуская эксцентрик, вращают колесо рукой в ту же сторону до тех пор, пока оно не станет вращаться свободно. Устанавливают вторую колодку так же, как и первую. После регулировки всех тормозов проверяют их действие на дороге.

Полную регулировку колесных тормозных механизмов производят при смене фрикционных накладок колодок или после механической обработки барабанов. Регулировку осуществляют после прокачки тормозной системы и при отсутствии в ней вакуума, когда гидровакуумные усилители не работают. При полной регулировке тормозов:

вывешивают колесо с помощью домкрата;

слегка отвертывают гайки 8 (см. рис. 2) опорных пальцев и устанавливают опорные пальцы колодок в начальное положение (метками внутрь);

нажимая на тормозную педаль с силой 120--160 Н, повертывают опорные пальцы в направлении, указанном стрелками так, чтобы нижняя часть накладки упиралась в тормозной барабан. Момент, когда это происходит, определяют по увеличению сопротивления при вращении опорного пальца. Затягивают в этом положении гайки опорных пальцев;

опускают тормозную педаль;

повертывают регулировочные эксцентрики 16 так, чтобы колодки упирались в тормозной барабан, а затем повертывают регулировочные эксцентрики в обратном направлении настолько, чтобы колесо вращалось свободно;

регулируют таким образом тормозные механизмы всех колес.

После регулировки тормозных механизмов проверяют их действие на дороге. При правильно отрегулированных зазорах между накладками колодок и барабанами тормозная педаль при интенсивном торможении должна опускаться не более чем на 2/3 полного хода.

Проверка работы гидровакуумных усилителей тормозов.

Состояние гидровакуумных усилителей тормозов определяют при неработающем двигателе, нажимая на тормозную педаль несколько раз, а затем, удерживая ее нажатой с усилием 300 -- 5000 Н, пускают двигатель. Под действием образующегося вакуума усилители вступят в работу. В это время следят за поведением тормозной педали, работой двигателя на холостом ходу, шипением воздуха, проходящего через воздушный фильтр, который расположен в кабине.

Педаль переместится вниз (к полу кабины) на 15 -- 20 мм. В момент движения педали будет прослушиваться шипение воздуха, после чего оно прекратится. Если двигатель устойчиво работает на холостом ходу, то гидровакуумные усилители работают исправно.

Педаль слабо переместится вниз на 8 -- 10 мм. Шипение воздуха, проходящего через фильтр, слышится при удерживании педали. Двигатель на холостом ходу работает неустойчиво или останавливается. В этом случае имеет место порыв диафрагмы камеры усилителя или диафрагмы клапана управления в одном из усилителей. Необходимо разобрать камеру усилителя или клапан управления и заменить поврежденную диафрагму. Для нахождения неисправного усилителя поочередно отключают их от вакуумного трубопровода. Для этого снимают шланг с переднего корпуса камеры усилителя и заглушают его. Затем проверяют работоспособность неотключенного усилителя. При включенном исправном усилителе педаль переместится вниз на 8 -- 10 мм, будет иметь место кратковременное шипение воздуха, а двигатель будет устойчиво работать на холостом ходу при нажатой тормозной педали.

Рис. 10. Проверка герметичности вакуумной системы привода тормозов: 1-- гидровакуумный усилитель тормозов; 2,4 --шланги; 3--трубка; 5 -- тройник; 6 -- вакуумметр

Педаль не перемещается, слышится шипение воздуха только в момент запуска двигателя, двигатель устойчиво работает на холостом ходу при удерживании тормозной педали. В этом случае в одном из усилителей из-за неплотного прилегания шарика 15 (см. рис. 4) к седлу поршня или разрушения манжеты 16 поршня полость низкого давления не разъединяется от полости высокого давления. Необходимо путем поочередного отключения усилителей от вакуумного трубопровода (порядок проведения работы описан выше) определить неисправный усилитель, а затем разобрать его и заменить поврежденные детали (шарик с поршнем или манжету). После этого меняют жидкость, так как ее загрязнение вызывает негерметичность шарика и износ манжеты.

Педаль не перемещается, воздух не проходит через фильтр (нет шипения), двигатель устойчиво работает на холостом ходу. Это указывает на засорение воздушного фильтра или трубопровода. Промывают фильтр в бензине, а затем опускают в масло, которым заправляется двигатель, и, дав маслу стечь, ставят фильтр на место. Продувают трубопровод, соединяющий фильтр с усилителями.

Работа гидровакуумных усилителей тормозов зависит также от разрежения, создаваемого двигателем на холостом ходу, и герметичности запорного клапана, воздушного трубопровода, атмосферных клапанов 7 (см. рис. 4) усилителей и самих усилителей обычно в местах установки диафрагмы.

Для проверки разрежения, создаваемого двигателем на холостом ходу, и герметичности системы в вакуумный трубопровод устанавливают вакуумметр. Вакуумметр удобнее установить через специальный тройник в месте соединения вакуумного шланга с передним корпусом камеры усилителя (рис. 10).

Пускают двигатель и проверяют показания вакуумметра на холостом ходу. Если показания менее 50 кПа или неустойчивы, то требуется регулировка двигателя.

Останавливают двигатель и замечают интенсивность снижения разрежения. Если оно снижается более чем на 20 кПа в течение 2 мин, то имеется негерметичность.

Для обнаружения негерметичности запорного клапана и вакуумного трубопровода отсоединяют вакуумные шланги от передних корпусов усилителей. Один из них заглушают, а другой соединяют с вакуумметром. Запускают двигатель, а затем, дав ему поработать на холостом ходу, останавливают. В течение 15 мин падения разрежения не должно быть.

Герметичность в усилителях и их атмосферных клапанах определяют после того, как будет обеспечена герметичность запорного клапана и вакуумного трубопровода. При проверке усилителей их поочередно отключают от вакуумного трубопровода. Вакуумметр присоединяют к вакуумному шлангу усилителя. Запускают двигатель, а затем останавливаютего. При падении разрежения более 20 кПа в течение 2 мин находят негерметичность в усилителе и устраняют ее. При необходимости проверяют герметичность и второго усилителя.

Регулировка стояночной тормозной системы. По мере изнашивания фрикционных тормозных накладок колодок зазор между накладками и тормозным барабаном восстанавливают вращением регулировочного винта 1 (см. рис. 7).

Последовательность регулировки тормоза:

вывешивают с помощью домкрата задние колеса автомобиля, рычаг переключения передач ставят в нейтральное положение.

ставят рычаг 9 в крайнее переднее положение;

завертывают регулировочный винт 1 так, чтобы тормозной барабан 15 от усилия рук не проворачивался;

регулируют длину тяги 13 регулировочной вилкой 17 до совпадения отверстия в вилке с отверстием в рычаге, 16 выбрав все зазоры в соединениях;

увеличивают длину тяги, отвернув регулировочную вилку на 1 -- 2 оборота; затягивают контргайку вилки, вставляют палец (головкой вверх), за-шплинтовывают;

отпускают регулировочный винт настолько, чтобы барабан свободно вращался. При приложении усилия 60 кгс на рукоятку рычага 9 защелка 12 должна переместиться на 3 -- 4 зуба сектора 11. Опускают задние колеса автомобиля.

На сегодняшний день конструкция тормозных систем большинства легковых автомобилей примерно одинакова. Тормозная система автомобиля состоит из трех типов:

Основная (рабочая) — служит для замедления транспортного средства и для его остановки.

Вспомогательная (аварийная) — запасная тормозная система, необходимая для остановки автомобиля при выходе из строя основной тормозной системы.

Стояночная — тормозная система, которая фиксирует автомобиль во время стоянки и удерживает его на уклонах, но также может быть частью аварийной системы.

Элементы тормозной системы автомобиля

Если говорить о составляющих, то тормозную систему можно разделить на три группы элементов:

  • тормозной привод (тормозная педаль; вакуумный усилитель тормозов; главный тормозной цилиндр; колесные тормозные цилиндры; регулятор давления, шланги и трубопроводы);
  • компоненты вспомогательной электроники (ABS, EBD и т. д.).

Процесс работы тормозной системы

Процесс работы тормозной системы в большинстве легковых автомобилей происходит следующим образом: водитель нажимает на тормозную педаль, которая, в свою очередь, передает усилие на главный тормозной цилиндр через вакуумный усилитель тормозов.


Далее главный тормозной цилиндр создает давление тормозной жидкости, нагнетая ее по контуру к тормозным цилиндрам (в современных автомобилях почти всегда применяется система из двух независимых контуров: если один откажет, второй позволит автомобилю совершить остановку).

Затем колесные цилиндры приводят в действие тормозные механизмы: в каждом из них внутри суппорта (если речь идет о дисковых тормозах) с обеих сторон установлены тормозные колодки, которые, прижимаясь к вращающимся тормозным дискам, замедляют вращение.

Для повышения безопасности в дополнение к вышеописанной схеме автопроизводители стали устанавливать вспомогательные электронные системы, способные повысить эффективность и безопасность торможения. Самые популярные из них — антиблокировочная система (Anti-lock braking system, ABS) и система распределения тормозных усилий (Electronic brakeforce distribution, EBD). Если ABS предотвращает блокировку колес при экстренном торможении, то EBD действует превентивно: управляющая электроника использует датчики ABS, анализирует вращение каждого колеса (а также угол поворота передних колес) при торможении и индивидуально дозирует тормозное усилие на нем.

Все это позволяет автомобилю сохранять курсовую устойчивость, а также снижает вероятность его заноса или сноса при торможении в повороте или на смешанном покрытии.

Диагностика и неисправности тормозной системы

Усложнение конструкции тормозных систем привело как к более обширному списку возможных поломок, так и к более сложной их диагностике. Несмотря на это, многие неисправности можно диагностировать самостоятельно, что позволит вам устранить неполадки на ранней стадии. Далее мы приводим признаки неисправностей и наиболее частые причины их возникновения.

1) Снижение эффективности системы в целом:

Сильный износ тормозных дисков и/или тормозных колодок (несвоевременное техобслуживание).

Снижение фрикционных свойств тормозных колодок (перегрев тормозных механизмов, использование некачественных запчастей и т. д.).

Износ колесных или главного тормозного цилиндров.

Выход из строя вакуумного усилителя тормозов.

Давление в шинах, не предусмотренное заводом-изготовителем автомобиля.

Установка колес, размер которых не предусмотрен заводом-изготовителем автомобиля.


2) Проваливание педали тормоза (или слишком «мягкая» педаль тормоза):

- «Завоздушивание» контуров тормозной системы.

Утечка тормозной жидкости и как следствие серьезные проблемы с автомобилем, вплоть до полного отказа тормозов. Может быть вызвана выходом из строя одного из тормозных контуров.

Закипание тормозной жидкости (некачественная жидкость или несоблюдение сроков ее замены).

Неисправность главного тормозного цилиндра.

Неисправность рабочих (колесных) тормозных цилиндров.

3) Слишком «тугая» педаль тормоза:

Поломка вакуумного усилителя или повреждение его шлангов.

Износ элементов тормозных цилиндров.

4) Уход автомобиля в сторону при торможении:

Неравномерный износ тормозных колодок и/или тормозных дисков (неправильная установка элементов; повреждение суппорта; поломка тормозного цилиндра; повреждение поверхности тормозного диска).

Неисправность или повышенный износ одного или нескольких тормозных колесных цилиндров (некачественная тормозная жидкость, некачественные комплектующие или просто естественный износ деталей).

Отказ одного из тормозных контуров (повреждение герметичности тормозных трубок и шлангов).

Неравномерный износ шин. Чаще всего это вызвано нарушением установочных углов колес (сход-развала) автомобиля.

Неравномерное давление в передних и/или в задних колесах.

5) Вибрация при торможении:

Повреждение тормозных дисков. Часто вызвано их перегревом, к примеру при экстренном торможении на большой скорости.

Повреждение колесного диска или шины.

Некорректная балансировка колес.

6) Посторонний шум при торможении(может выражаться скрежетом или скрипом тормозных механизмов):

Износ колодок до срабатывания специальных индикаторных пластин. Свидетельствует о необходимости замены колодок.

Полный износ фрикционных накладок тормозных колодок. Может сопровождаться вибрацией руля и педали тормоза.

Перегрев тормозных колодок или попадание в них грязи и песка.

Использование некачественных или поддельных тормозных колодок.

Смещение суппорта или недостаточное смазывание штифтов. Необходима установка противоскрипных пластин или очистка и смазка тормозных суппортов.

7) Горит лампа «ABS»:

Неисправность или засорение датчиков ABS.

Выход из строя блока (модулятора) ABS.

Обрыв или плохой контакт в соединении кабелей.

Сгорел предохранитель системы ABS.

8) Горит лампа «Brake»:

Затянут ручной тормоз.

Низкий уровень тормозной жидкости.

Неисправность датчика уровня тормозной жидкости.

Плохой контакт или обрыв соединений рычага ручного тормоза.

Изношены тормозные колодки.

Неисправна система ABS (см. пункт 7).

Периодичность замены колодок и тормозных дисков

Во всех перечисленных случаях необходимо Но лучше всего — не допускать критичного износа деталей. Так, например, разница в толщине нового и изношенного тормозного диска не должна превышать 2-3 мм, а остаточная толщина материала колодок должна составлять не менее 2 мм.

Руководствоваться пробегом автомобиля при замене тормозных элементов не рекомендуется: в условиях городской езды, к примеру, передние колодки могут износиться через 10 тыс. км, в то время как в загородных поездках могут выдержать и 50-60 тыс. км (задние колодки, как правило, изнашиваются в среднем в 2-3 раза медленнее, чем передние).

Оценить состояние тормозных элементов можно, и не снимая колеса с автомобиля: на диске не должно быть глубоких проточек, а металлическая часть колодки не должна прилегать вплотную к тормозному диску.


Профилактика тормозной системы:

  • Обращайтесь в специализированные сервис-центры.
  • Вовремя меняйте тормозную жидкость: заводы-изготовители рекомендуют проводить эту процедуру каждые 30-40 тысяч километров пробега или раз в два года.
  • Новые диски и колодки необходимо обкатывать: на протяжении первых километров после замены запчастей избегайте интенсивных и длительных торможений.
  • Не игнорируйтесообщения бортового компьютера автомобиля: современные автомобили могут предупреждать о необходимости посещения сервиса.
  • Используйте качественные комплектующие, отвечающие требованиям завода-изготовителя автомобиля.
  • При замене колодок рекомендуется использовать смазку для суппортов и очищать их от грязи.
  • Следите за состоянием колес автомобиля и не используйте шины и диски, параметры которых отличаются от рекомендуемых заводом-изготовителем авто.

Методы и средства диагностирования тормозных систем разрабатываются применительно к диагностическим параметрам и требованиям технологических процессов технического обслуживания и ремонта автомобиля. Соответственно этому существуют средства для общего диагностирования тормозов в дорожных условиях, для общего стационарного диагностирования перед обслуживанием или ремонтом, для поэлементного диагностирования в процессе технического обслуживания и ремонта или же после их выполнения.

Существующие средства технической диагностики тормозов (СТДТ) могут быть классифицированы по пяти признакам:

1. по использованию сил сцепления колеса с опорной поверхностью;

2. по месту установки;

3. по способу нагружения;

4. по режиму движения колеса;

5. по конструкции опорного устройства.

Рис. 2.1. Средства технического диагностирования тормозов.

2.1. Стенды технической диагностики тормозов автомобиля.

Все стенды технического диагностирования тормозов (СТДТ) подразделяют на две большие группы. Первая, к которой относят основную часть стендов, является более многочисленной. Эта группа СТДТ работает с использованием сил сцепления колеса с опорной поверхностью. В данных стендах реализуемый тормозной момент ограничен силой сцепления колеса с опорной поверхностью стенда, поэтому в большинстве из них невозможно реализовать полный тормозной момент автомобиля. Вторая группа стендов, работающих без использования сил сцепления колеса с опорной поверхностью, конструктивно отличается тем, что тормозной момент передается непосредственно через колесо или через ступицу. Эта группа стендов не нашла широкого применения из-за сложности конструкции и нетехнологичности проведения испытаний.

Стенды, в свою очередь, по способу нагружения бывают силовые и инерционные. Силовые стенды первой группы по режиму движения колеса на стенде могут быть: с частичным проворачиванием колеса и с полным проворачиванием колеса. Первый режим, как правило, характерен для платформенных стендов, а второй – для всех остальных стендов.

По конструкции опорных устройств стенды подразделяются на: площадочные, роликовые и ленточные (первая группа); с вывешиванием осей колес и без вывешивания осей колес (вторая группа).

В силовых платформенных стендах колеса автомобиля неподвижны, поэтому при нажатии на тормозную педаль изменяется лишь усилие сдвига (срыва) заблокированных колес с места, т.е. сила трения между тормозными накладками и барабаном (диском). Существуют стенды с одной общей площадкой под все колеса и с площадками под каждое колесо автомобиля.

Силовые платформенные стенды обладают целым рядом существенных недостатков, исключающих их широкое применение. Например, при испытании не учитываются влияние скорости движения на коэффициент трения скольжения и динамические воздействия в тормозной системе. Результаты измерений во многом зависят от положения колес на площадке стенда, от состояния опорной поверхности и протекторов колес. Измеряется лишь усилие страгивания с места заторможенных колес.


Платформенные инерционные стенды , имеющие подвижные (одну общую на каждую сторону или под каждое колесо) площадки, по сравнению с силовыми платформенными стендами более совершенны, т. к. более полно учитывают динамику действия тормозных сил в реальных условиях. Однако эти стенды обладают рядом существенных недостатков: потребность в территории для разгона автомобиля, снижение уровня безопасности работ при диагностировании, не достаточна точность и достоверность диагностической информации.

Инерционные нагрузочные ленточные стенды воспроизводят дорожные условия взаимодействия шины с опорными поверхностями. Однако они имеют значительные габариты и не обеспечивают достаточную устойчивость автомобиля при диагностировании, а такие конструктивные недостатки, как проскальзывание ленты и большие механические потери в парах трения.

Роликовые тормозные стенды . Из их числа в преобладающем большинстве используют стенды, основанные на силовом методе диагностирования. Силовой метод позволяет определить тормозные силы каждого колеса при задаваемом усилии нажатия на педаль, время срабатывания тормозного привода, оценивать состояние рабочих поверхностей тормозных накладок и барабана, эллипсность барабанов и т.п. В подавляющем большинстве этих стендов при принудительном прокручивании заторможенных колес автомобиля имитируется скорость движения 2-5 км/ч, редко до 10км/ч,

Наиболее достоверным является инерционный метод диагностирования на роликовых инерционных стендах. На них измеряют тормозной путь по каждому отдельному колесу, время срабатывания тормозного привода и замедление (максимальное и по каждому колесу в отдельности), но из-за сложности, высокой стоимости и более низкой технологичности в эксплуатации эти стенды применяют крайне ограниченно.

Для диагностирования тормозов в стесненных условиях, а также с целью локализации неисправностей и углубленного диагностирования наиболее эффективны переносные СТДТ. Суть метода работы этих устройств заключается в том, что колесо автомобиля принудительно раскручивают, и когда скорость вращения достигает заданного значения, срабатывает устройство нажатия на тормозную педаль; происходит торможение колеса, в процессе которого регистрируется время срабатывания тормозного привода, время нарастания замедления в заданном интервале частот вращения колеса и тормозной путь при установившемся значении тормозной силы.

В связи с малой инерционной массой вывешенных колес процесс торможения существенно отличается от реального. Приведение результатов диагностирования тормозов к реальным условиям осуществляют через переводные коэффициенты для тормозного пути и замедления.

Общее диагностирование автомобиля в дорожных условиях осуществляют следующими методами; визуально по тормозному пути и синхронности начала торможения всеми колесами; при помощи переносных приборов; по максимальному замедлению автомобиля; при помощи встроенных приборов; по автоматической сигнализации о достижении диагностическим параметром предельной величины.

Диагностирование по тормозному пути на динамометрической дороге заключается в наблюдении за автомобилем при резком однократном нажатии на педаль (сцепление выключено) и измерении тормозного пути. Одновременно наблюдают за синхронностью торможения по следам шин, оставленным на дороге. Испытательный участок должен быть ровным, сухим и горизонтальным. Нормативный тормозной путь (при скорости перед торможением, равной 30км/ч) составляет для легковых автомобилей не менее 7,2м, а для грузовых и автобусов в зависимости от грузоподъемности 9,5-11м. Этот способ не дает достоверных результатов, а пользование им затруднено в связи с необходимостью иметь достаточно большой участок горизонтальной дороги с твердым, сухим и ровным покрытием.

Диагностирование тормозов по замедлению автомобилей при помощи переносных приборов- деселерометров осуществляется также на ровном горизонтальном участке дороги. Автомобиль разгоняют до скорости 10-20км/ч и резко тормозят однократным нажатием на педаль при выключенном сцеплении. При этом измеряют Ј max . Нормативное замедление (оно не зависит от скорости автомобиля) для легковых автомобилей составляет не менее 5,8м/с 2 , а для грузовых в зависимости от грузоподъемности – от 5,0 до 4,2м/с 2 . Для ручных тормозов замедление должно быть в пределах 1,5- 2,5м/c 2 .

Рис. 2.2. Принципиальная схема деселерометра с поступательно движущейся массой.

1 – инерционная масса;
2 – сигнальная лампа;
3 – пластинчатая пружина;
4- регулировочный винт;
5 – батарея.

Принцип работы деселерометра заключается в фиксации пути перемещения подвижной инерционной массы прибора относительно его корпуса, неподвижно закрепленного на автомобиле. Это перемещение происходит под действием силы инерции, возникающей при торможении автомобиля и пропорциональной его замедлению. Инерционной массой деселерометра может служить поступательно движущийся груз, маятник, жидкость или датчик ускорения, а измерителем- стрелочное устройство, шкала, сигнальная лампа, самописец, компостер и др. Для обеспечения устойчивости показаний деселерометр снабжают демпфером (жидкостным, воздушным, пружинным), а для удобства измерений – механизмом фиксирующим максимальное замедление.

Для диагностирования тормозов автомобилей при помощи конструктивно встроенных приспособлений, применяют системы, обеспечивающие информацию об изношенности тормозных колодок, уровне тормозной жидкости, о давлении в пневмо – или гидроприводе, работе ручного тормоза, неисправности противоблокировочного устройства и др.

Система состоит из встроенных датчиков и щитковых указателей или аварийных сигнализаторов. Встроенное диагностирование обеспечивает возможность непрерывного слежения за состоянием тормозов. С этой точки зрения оно идеально. Ограниченность применения встроенного диагностирования обусловлена значительной его стоимостью. Развитие современного приборостроения и электроники позволяет ожидать быстрого развития средств встроенного диагностирования современных автомобилей.

Общее стационарное экспресс- диагностирование выполняют на специализированных постах и линиях, применяя быстродействующие платформенные стенды инерционного или силового типа. Для общего диагностирования с регулировочными работами применяют также и тормозные стенды роликового типа.

Принцип действия инерционного платформенного стенда основан на измерении сил инерции (от поступательно и вращательно движущихся масс автомобиля), возникающих при его торможении и приложенных в местах контакта колес с динамометрическими платформами.

Платформенный инерционный стенд состоит из четырех подвижных платформ с рифленой поверхностью, на которые автомобиль наезжает колесами со скоростью 6-12км/ч и останавливается при резком торможении. Возникающие при этом силы инерции автомобиля соответствуют тормозным силам. Они воздействуют на платформы стенда, воспринимаются жидкостными, механическими или электронными датчиками и фиксируются измерительными приборами, расположенными на пульте.

К недостаткам стендов платформенного инерционного типа относятся: большая занимаемая ими производственная площадь (с учетом необходимости предварительного разгона автомобиля); нестабильность коэффициента сцепления шин, зависящая от их загрязненности, влажности и температуры.

Платформенный тормозной стенд силового типа по принципу действия отличается от инерционного тем, что тормозные силы, возникающие при торможении в местах контакта колес с динамометрическими платформами, получаются не вследствие инерции автомобиля, а в результате его принудительного перемещения через платформы при помощи тягового конвейера.

Для поэлементного диагностирования на постах и линиях технического обслуживания и ремонта автомобилей применяют инерционные стенды с беговыми барабанами и силовые стенды с роликами. Они подразделяются два класса: с использованием для прокручивания заторможенных колес сил сцепления и без использования этих сил.

В первом случае заторможенное колесо проворачивают при помощи сил сцепления, возникающих в местах контакта колеса с барабаном (роликом), к которому приложен инерционный крутящий момент или момент электродвигателя непосредственно к колесу автомобиля. В практике диагностирования автомобилей в основном применяют стенды первого типа, так как они дешевле и технологичней.

Инерционные стенды с беговым или ленточным опорно-приводным устройством с использованием сил сцепления могут быть с приводом от колес работающего автомобиля или с приводом от электродвигателей. Стенд с приводом от колес автомобиля состоит из двух опорно-приводных агрегатов, кинематически связанных между собой и обеспечивающих одновременную проверку тормозов обеих осей автомобиля. Каждый опорно-приводной агрегат барабанного стенда состоит из рамы и двух пар беговых барабанов, на которые опираются колеса автомобиля. Беговые барабаны связаны с маховыми массами.

Стенд с электроприводом состоит из одного агрегата и как правило предназначен для поочередной проверки тормозов автомобилей с двумя ведущими осями опорно-приводной агрегат снабжают дополнительными опорными барабанами.

Принцип работы всех инерционных стендов с использованием сил сцепления одинаков. Если стенд имеет электропривод, то колеса автомобиля приводятся во вращение от роликов стенда, а если не имеет, то от автомобильного двигателя. В последнем случае ведущие колеса автомобиля приводят во вращение ролики стенда, а от них при помощи механической передачи и передние, ведомые, колеса.

После установки автомобиля на инерционный стенд доводят окружную скорость колес до 50-70км/ч и резко тормозят, одновременно разобщая все каретки стенда путем выключения электромагнитных муфт (заданная сила нажатия на педаль тормоза обеспечивается автоматом или месдозой с указателем, устанавливаемой на педаль тормоза). При этом в местах контакта колес с роликами стенда возникают силы инерции, противодействующие тормозным силам. Через некоторое время вращение барабанов стенда и колес автомобиля прекращается. Пути, пройденные каждым колесом автомобиля за это время, или угловое замедление барабана будут эквивалентны их тормозным путям и тормозным силам.

Тормозной путь определяют по частоте вращения роликов стенда, фиксируемой счетчиком, или по продолжительности их вращения, измеряемой секундомером, а замедление - угловым деселерометром. На инерционном стенде возможно и прямое измерение тормозного момента по величине реактивного крутящего момента, возникающего на валу стенда между маховиком барабаном. Для достоверности полученных результатов необходимо, чтобы условия торможения колес автомобиля на стенде соответствовали реальным условиям торможения автомобиля на дороге. Это означает, что поглощаемая тормозами автомобиля кинетическая энергия при их испытании на стенде должна быть такой же, как и на дороге.

Силовые стенды с использованием сил сцепления колеса позволяют измерять тормозные силы в процессе его вращения с некоторой скоростью V=2…10км/ч. При этом тормозную силу каждого из колес автомобиля, установленного на стенде, измеряют, затормаживая их в процессе вращения. Вращение колес осуществляется роликами стенда от электродвигателя. Тормозные силы определяют по величине крутящего момента, возникающего на роликах при торможении колес.

При диагностировании тормозов с гидравлическим приводом этим методом определяют зависимость измерения тормозной силы Рт на каждом из колес автомобиля от силы давления на педаль тормоза Рн. Эта зависимость, называемая тормозной диаграммой, дает достаточно полную характеристику работоспособности тормозной системы. При силовом методе диагностирования тормозов общим параметром эффективности является удельная тормозная сила ∑Р т /G a ·100%. Для большинства автомобилей эта сила равна 45-80%, последняя цифра является показателем отличного состояния тормозов. Разность тормозных сил на колесах одной оси автомобиля, обеспечивающая отсутствие заноса, не должна быть больше 10-15%.

Диагностирование тормозов при помощи силовых стендов наиболее распространено. Это объясняется большой приспособленностью силовых стендов к поэлементному диагностированию при совмещении диагностических работ с регулировочными, относительно небольшой их стоимостью, малой занимаемой или производственной площадью и экономичным расходом электроэнергии.

Несомненным преимуществом инерционных тормозных стендов является возможность диагностирования тормозов на высоких скоростях движения. Именно этот фактор является основополагающим для испытания тормозных систем с АБС, т.к. эта система начинает свою работу со скорости примерно в 20…30км/ч.



Тормозная система – это один из главных элементов в системе управления автомобилем, который может предупреждать большинство аварий. По этой причине диагностика тормозной системы должна осуществляться своевременно и качественно. Даже самые незначительные нарушения работы тормозов должны немедленно устраняться. В противном случае это может обернуться серьезной аварией.



Диагностика тормозной системы автомобиля

В связи с большой ответственностью тормозной системы за жизнь людей и безопасность дорожного движения ее регулировку должны осуществлять исключительно квалифицированные специалисты с большим опытом работы. В нашем автосервисе диагностика тормозной системы проводится профессиональными мастерами с использованием специализированного оборудования. Высокое качество выполнения работ подтверждается многочисленными положительными отзывами наших клиентов. Оперативность выполнения диагностики и устранения неисправностей обеспечивают возможность забрать свой автомобиль в день сдачи на обслуживание. Каждая диагностика тормозной системы включает большое количество контрольных операций, рекомендованных производителями автомобилей. Найти нашу мастерскую можно недалеко от станций метро «Алтуфьево», «Медведково», «Бибирево» (г. Москва, район СВАО).




Диагностика тормозной системы: что указывает на неисправность?

Чаще всего диагностика тормозной системы автомобиля выполняется при обнаружении:


  • посторонних шумов;
  • заедания тормозов;
  • течи тормозной жидкости (любой интенсивности);
  • легкого хода педалей;
  • провала тормозов;
  • увеличения тормозного пути.


Указанные неполадки могут вызываться нарушением герметичности, дефицитом тормозной жидкости, износом тормозных колодок, несвоевременной заменой тормозной жидкости, колодок.


При обнаружении даже одного из этих признаков отклонения от нормальной работы потребуется грамотная диагностика тормозной системы, включающая проверку герметичности всех элементов системы, вакуумного усилителя, работы индикаторных приборов, герметичность пневмопривода. Для автомобилей с бортовым компьютером оптимальным вариантом является диагностика с использованием компьютера или автомобильного диагностического сканера, которые умеют считывать ошибки с блока контроллера.




Диагностика неисправностей тормозной системы

Сегодня диагностика рабочих параметров тормозной системы может быть проверена с помощью двух основных методов: стендового и дорожного. Диагностика неисправностей тормозной системы каждым из них включает следующие испытания и измерения:


  • длина тормозного пути;
  • установившееся замедление транспортного средства;
  • отклонение линейное;
  • уклон дороги, при котором машина удерживается АТС;
  • удельная сила торможения;
  • время работы тормозной системы;
  • коэффициент неравномерности тормозных сил на одной оси.


На сегодня дорожный метод диагностики практически не применяется ввиду отсутствия объективности и влияния внешних факторов воздействия. Диагностика неисправностей тормозной системы на специализированном стенде обеспечивает наиболее точные измерения. На основании полученных данных можно будет судить о состоянии элементов тормозной системы и безопасности управления испытуемым транспортным средством. Количество и качество измерений строго регламентированы на законодательном уровне, поэтому испытательный стенд проходит периодическую поверку на соответствие точности измерений.




Диагностика тормозной системы: наглядные примеры

Диагностика тормозной системы автомобиля начинается с фиксации автомобиля в одном положении. Если эффективность остановки на одном месте не соответствует требуемым параметрам, тогда можно судить об утечке тормозной жидкости из системы.


Если тормозная педаль все время проваливается, тогда диагностика тормозной системы вероятнее всего укажет на завоздушенность системы. Удалив воздух из системы торможения, потребуется восстановить до первоначальной отметки уровень тормозной жидкости в бачке.


Часто возможной причиной отклонений в нормальной работе тормозной системы является наличие масла на тормозных колодках. При этом во время торможения машины слышен характерный скрип. Диагностика тормозной системы покажет физический износ тормозных колодок, после их замены посторонний шум исчезнет. Если не выполнить эту процедуру своевременно, можно испортить тормозной диск.


Слишком тугой ход педали тормоза говорит о поломке вакуумного усилителя или нарушении герметичности. Своевременная диагностика тормозной системы автомобиля поможет быстро определить место возникновения неисправности.


Самопроизвольное торможение может быть спровоцировано нарушением положения тормозного суппорта или его поломкой. Диагностика тормозной системы при этом сводится к обследованию работы суппортов и постановке диагноза об их исправности. Очень часто главной причиной поломки является нарушение герметичности соединительных шлангов системы вследствие механических воздействий.


Увод автомобиля в сторону при торможении может говорить о наличии проблем с тормозным суппортом или тормозными колодками. Диагностика тормозной системы будет заключаться в проведении обследования рулевого управления и элементов тормозной системы на колесах машины. Кроме этого, существует вероятность неравномерного износа тормозных колодок.


Сильный шум при торможении может быть вызван износом тормозной накладки или сильной коррозии тормозного диска. Иногда диагностика тормозной системы автомобиля при этих симптомах указывает на наличие инородных предметов между тормозной колодкой и диском.


Наличие большого хода тормозной педали чаще всего является следствием неисправности вакуумного усилителя. В некоторых случаях подобные признаки характерны при наличии воздуха в гидравлической тормозной системе. Диагностика тормозной системы поможет точно установить причину поломки и предупредить дальнейшее развитие аварии.


Слишком «мягкий» ход педали торможения вероятнее всего вызван разгерметизацией гидравлической системы или неисправностью главного тормозного цилиндра. Диагностика тормозной системы также может показать неудовлетворительное состояние тормозной жидкости.


Большое сопротивление при нажатии на педаль тормоза обычно вызвано неисправностью вакуумного усилителя или повреждением контура гидравлической системы. Кроме этого, вызывать подобное явление могут новые тормозные колодки, не успевшие приработаться. Диагностика тормозной системы автомобиля в этом случае поможет определить истинную причину неисправности.


Сильные вибрации на руле и педали тормоза свидетельствуют о сильном износе тормозных дисков, ослаблении крепления тормозных суппортов, износе тормозных накладок. Качественная диагностика тормозной системы автомобиля обеспечит точное обнаружение и локализацию места поломки.


Постоянное притормаживание может быть вызвано неправильной регулировкой стояночного тормоза, вакуумного усилителя или главного тормозного цилиндра. Чтобы точно сказать, какая причина этого явления, необходима профессиональная диагностика тормозной системы автомобиля.




Внешние факторы влияния

Работа тормозной системы машины может изменяться в зависимости от воздействия определенных факторов окружающей среды:


  • Шины с различным коэффициентом сцепления с дорожным полотном имеют абсолютно разные тормозные характеристики. При этом на сцепление с дорогой влияют следующие факторы: давление в шинах, глубина и орнамент протектора, ширина колеса.
  • Степень загрузки автомобиля очень сильно влияет на его тормозной путь. Чем сильнее нагружено транспортное средство, тем длиннее будет его тормозной путь.
  • Естественный износ резиновых тормозных шлангов приводит к эффекту демпфирования, который сглаживает резкость тормозов и соответственно степень их эффективности.
  • Нарушение углов развала и схождения приводит к уводу автомобиля от прямолинейного направления движения при торможении.


Грамотная диагностика тормозной системы автомобиля обязательно учитывает все эти факторы внешнего влияния.

Согласно действующим стандартам применяют два основных метода диагностирования тормозных систем - дорожный и стендовый. Для них установлены следующие контролируемые параметры:

  • при проведении дорожных испытаний - тормозной путь; установившееся замедление; устойчивость при торможении; время срабатывания тормозной системы; уклон дороги, на котором должно неподвижно удерживаться транспортное средство
  • при проведении стендовых испытаний - общая удельная тормозная сила; коэффициент неравномерности (относительная неравномерность) тормозных сил колес оси, а для автопоезда еще дополнительно коэффициент совместимости звеньев автопоезда и асинхронность времени срабатывания тормозного привода

Существует несколько видов стендов и приборов, использующих различные методы и способы измерения тормозных качеств:

  • статические силовые
  • инерционные платформенные
  • инерционные роликовые
  • силовые роликовые стенды
  • приборы для измерения замедления автомобиля при дорожных испытаниях

Статические силовые стенды

Статические силовые стенды для диагностирования тормозов автомобиля представляют собой роликовые или платформенные устройства, предназначенные для проворачивания «срыва» заторможенного колеса и измерения прикладываемой при этом силы. Такие стенды могут иметь гидравлический, пневматический или механический привод. Измерение тормозной силы возможно при вывешенном колесе или при его опоре на гладкие беговые барабаны. Недостатком статического способа диагностирования тормозов является неточность результатов, вследствие чего не воспроизводятся условия реального динамического процесса торможения.

Инерционные платформенные стенды

Принцип действия инерционного платформенного стенда основан на измерении сил инерции (от поступательно и вращательно движущихся масс), возникающих при торможении автомобиля и приложенных в местах контакта колес с динамометрическими платформами. Такие стенды иногда используются на предприятиях автотехобслуживания для входного контроля тормозных систем или экспресс-диагностирования транспортных средств.

Инерционные роликовые стенды

Инерционные роликовые стенды имеют ролики, которые могут иметь привод от электродвигателя или от двигателя автомобиля. В последнем случае ведущие колеса автомобиля приводят во вращение ролики стенда, а от них с помощью механической передачи - и передние (ведомые) колеса.

После установки автомобиля на инерционный стенд линейную скорость колес доводят до 50…70 км/ч и резко тормозят, одновременно разобщая все каретки стенда путем выключения электромагнитных муфт. При этом в местах контакта колес с роликами (лентами) стенда возникают силы инерции, противодействующие тормозным силам. Через некоторое время вращение барабанов стенда и колес автомобиля прекращается. Пути, пройденные каждым колесом автомобиля за это время (или угловое замедление барабана), будут эквивалентны тормозным путям и тормозным силам.

Тормозной путь определяют по частоте вращения роликов стенда, фиксируемой счетчиком, или по продолжительности их вращения, измеряемой секундомером, а замедление - угловым деселерометром.

Метод, реализуемый инерционным роликовым стендом, создает условия торможения автомобиля, максимально приближенные к реальным. Но в силу высокой стоимости стенда, недостаточной безопасности, трудоемкости и больших затрат времени, необходимого для диагностирования, стенды такого типа нерационально использовать при проведении диагностирования на автопредприятиях и при гостехосмотре.

Силовые роликовые стенды

Силовые роликовые стенды с использованием сил сцепления колеса с роликом позволяют измерять тормозные силы в процессе его вращения со скоростью 2.10 км/ч. Вращение колес осуществляется роликами стенда от электродвигателя. Тормозные силы определяют по реактивному моменту, возникающему на статоре мотор-редуктра стенда при торможении колес.

Роликовые тормозные стенды позволяют получать достаточно точные результаты проверки тормозных систем. При каждом повторении испытания они способны создать условия (прежде всего скорость вращения колес), абсолютно одинаковые с предыдущими, что обеспечивается точным заданием начальной скорости торможения внешним приводом. Кроме того, при испытании на силовых роликовых тормозных стендах предусмотрено измерение так называемой «овальности» - оценка неравномерности тормозных сил за один оборот колеса, т.е. исследуется вся поверхность торможения.

При испытании на роликовых тормозных стендах, когда усилие передается извне (от тормозного стенда), физическая картина торможения не нарушается. Тормозная система должна поглотить поступающую извне энергию даже несмотря на то, что автомобиль не обладает кинетической энергией.

Есть еще одно важное условие - безопасность испытаний. Самые безопасные испытания - на силовых роликовых тормозных стендах, поскольку кинетическая энергия испытуемого автомобиля на стенде равна нулю. В случае отказа тормозной системы при дорожных испытаниях или на площадочных тормозных стендах вероятность аварийной ситуации очень высока.

Следует отметить, что по совокупности своих свойств именно силовые роликовые стенды являются наиболее оптимальным решением как для диагностических линий станций техобслуживания, так и для диагностических станций, проводящих гостехосмотр.

Современные силовые роликовые стенды для проверки тормозных систем могут определять следующие параметры:

  • по общим параметрам транспортного средства и состоянию тормозной системы - сопротивление вращению незаторможенных колес; неравномерность тормозной силы за один оборот колеса; массу, приходящуюся на колесо; массу, приходящуюся на ось
  • по рабочей и стояночной тормозным системам - наибольшую тормозную силу; время срабатывания тормозной системы; коэффициент неравномерности (относительную неравномерность) тормозных сил колес оси; удельную тормозную силу; усилие на органе управления

Данные контроля выводятся на дисплей в виде цифровой или графической информации. Результаты диагностирования могут выводиться на печать и храниться в памяти компьютера в базе данных диагностируемых автомобилей.

Рис. Данные контроля тормозной системы автомобиля: 1 - индикация проверяемой оси; ПО - рабочий тормоз передней оси; СТ - стояночная тормозная система; ЗО - рабочий тормоз задней оси

Результаты проверки тормозных систем могут выводиться также на приборную стойку.

Динамику процесса торможения можно наблюдать в графической интерпретации. График показывает тормозные силы (по вертикали) относительно усилия на педали тормоза (по горизонтали). На нем отражены зависимости тормозных сил от усилия нажатия на педаль тормоза как для левого колеса (верхняя кривая), так и для правого (нижняя кривая).

Рис. Приборная стойка тормозного стенда

Рис. Графическое отображение динамики процесса торможения

С помощью графической информации можно наблюдать также разницу в тормозных силах левого и правого колес. На графике показано соотношение тормозных сил левого и правого колес. Кривая торможения не должна выходить за границы нормативного коридора, которые зависят от конкретных нормативных требований. Наблюдая характер изменения графика, оператор-диагност может сделать заключение о состоянии тормозной системы.

Рис. Значения тормозных сил левого и правого колес